979 resultados para minimalist hardware architecture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a convex geometry (CG)-based method for blind separation of nonnegative sources. First, the unaccessible source matrix is normalized to be column-sum-to-one by mapping the available observation matrix. Then, its zero-samples are found by searching the facets of the convex hull spanned by the mapped observations. Considering these zero-samples, a quadratic cost function with respect to each row of the unmixing matrix, together with a linear constraint in relation to the involved variables, is proposed. Upon which, an algorithm is presented to estimate the unmixing matrix by solving a classical convex optimization problem. Unlike the traditional blind source separation (BSS) methods, the CG-based method does not require the independence assumption, nor the uncorrelation assumption. Compared with the BSS methods that are specifically designed to distinguish between nonnegative sources, the proposed method requires a weaker sparsity condition. Provided simulation results illustrate the performance of our method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract—
After a decade of extensive research on application-specific wireless sensor networks (WSNs), the recent development of information and communication technologies makes it practical to realize the software-defined sensor networks (SDSNs), which are able to adapt to various application requirements and to fully explore the resources of WSNs. A sensor node in SDSN is able to conduct multiple tasks with different sensing targets simultaneously. A given sensing task usually involves multiple sensors to achieve a certain quality-of-sensing, e.g., coverage ratio. It is significant to design an energy-efficient sensor scheduling and management strategy with guaranteed quality-of-sensing for all tasks. To this end, three issues are investigated in this paper: 1) the subset of sensor nodes that shall be activated, i.e., sensor activation, 2) the task that each sensor node shall be assigned, i.e., task mapping, and 3) the sampling rate on a sensor for a target, i.e., sensing scheduling. They are jointly considered and formulated as a mixed-integer with quadratic constraints programming (MIQP) problem, which is then reformulated into a mixed-integer linear programming (MILP) formulation with low computation complexity via linearization. To deal with dynamic events such as sensor node participation and departure, during SDSN operations, an efficient online algorithm using local optimization is developed. Simulation results show that our proposed online algorithm approaches the globally optimized network energy efficiency with much lower rescheduling time and control overhead.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile virtualization has emerged fairly recently and is considered a valuable way to mitigate security risks on Android devices. However, major challenges in mobile virtualization include runtime, hardware, resource overhead, and compatibility. In this paper, we propose a lightweight Android virtualization solution named Condroid, which is based on container technology. Condroid utilizes resource isolation based on namespaces feature and resource control based on cgroups feature. By leveraging them, Condroid can host multiple independent Android virtual machines on a single kernel to support mutilple Android containers. Furthermore, our implementation presents both a system service sharing mechanism to reduce memory utilization and a filesystem sharing mechanism to reduce storage usage. The evaluation results on Google Nexus 5 demonstrate that Condroid is feasible in terms of runtime, hardware resource overhead, and compatibility. Therefore, we find that Condroid has a higher performance than other virtualization solutions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Identity-based encryption (IBE) allows one party to send ciphered messages to another using an arbitrary identity string as an encryption key. Since IBE does not require prior generation and distribution of keys, it greatly simplifies key management in public-key cryptography. According to the Menezes-Okamoto-Vanstone (MOV) reduction theory, the IBE scheme based on bilinear map loses the high efficiency of elliptic curve because of the requirement of large security parameters. Therefore, it is important to build a provably secure IBE scheme without bilinear map. To this end, this paper proposes an improved IBE scheme that is different from the previous schemes because this new scheme does not use symmetric encryption algorithm. Furthermore, it can be proven to be secure against adaptively chosen identity and chosen plaintext attacks in the standard model. Elaborated security and performance analysis demonstrate that this new scheme outperforms the previous ones in terms of the time complexity for encryption and decryption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyber attacks are an unfortunate part of society as an increasing amount of critical infrastructure is managed and controlled via the Internet. In order to protect legitimate users, it is critical for us to obtain an accurate and timely understanding of our cyber opponents. However, at the moment we lack effective tools to do this. In this article we summarize the work on modeling malicious activities from various perspectives, discuss the pros and cons of current models, and present promising directions for possible efforts in the near future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vehicular Cyber-Physical System (VCPS) provides CPS services via exploring the sensing, computing and communication capabilities on vehicles. VCPS is deeply influenced by the performance of the underlying vehicular network with intermittent connections, which make existing routing solutions hardly to be applied directly. Epidemic routing, especially the one using random linear network coding, has been studied and proved as an efficient way in the consideration of delivery performance. Much pioneering work has tried to figure out how epidemic routing using network coding (ERNC) performs in VCPS, either by simulation or by analysis. However, none of them has been able to expose the potential of ERNC accurately. In this paper, we present a stochastic analytical framework to study the performance of ERNC in VCPS with intermittent connections. By novelly modeling ERNC in VCPS using a token-bucket model, our framework can provide a much more accurate results than any existing work on the unicast delivery performance analysis of ERNC in VCPS. The correctness of our analytical results has also been confirmed by our extensive simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Botnets have become major engines for malicious activities in cyberspace nowadays. To sustain their botnets and disguise their malicious actions, botnet owners are mimicking legitimate cyber behavior to fly under the radar. This poses a critical challenge in anomaly detection. In this paper, we use web browsing on popular web sites as an example to tackle this problem. First of all, we establish a semi-Markov model for browsing behavior. Based on this model, we find that it is impossible to detect mimicking attacks based on statistics if the number of active bots of the attacking botnet is sufficiently large (no less than the number of active legitimate users). However, we also find it is hard for botnet owners to satisfy the condition to carry out a mimicking attack most of the time. With this new finding, we conclude that mimicking attacks can be discriminated from genuine flash crowds using second order statistical metrics. We define a new fine correntropy metrics and show its effectiveness compared to others. Our real world data set experiments and simulations confirm our theoretical claims. Furthermore, the findings can be widely applied to similar situations in other research fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a fundamental tool for network management and security, traffic classification has attracted increasing attention in recent years. A significant challenge to the robustness of classification performance comes from zero-day applications previously unknown in traffic classification systems. In this paper, we propose a new scheme of Robust statistical Traffic Classification (RTC) by combining supervised and unsupervised machine learning techniques to meet this challenge. The proposed RTC scheme has the capability of identifying the traffic of zero-day applications as well as accurately discriminating predefined application classes. In addition, we develop a new method for automating the RTC scheme parameters optimization process. The empirical study on real-world traffic data confirms the effectiveness of the proposed scheme. When zero-day applications are present, the classification performance of the new scheme is significantly better than four state-of-the-art methods: random forest, correlation-based classification, semi-supervised clustering, and one-class SVM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The success of cloud computing makes an increasing number of real-time applications such as signal processing and weather forecasting run in the cloud. Meanwhile, scheduling for real-time tasks is playing an essential role for a cloud provider to maintain its quality of service and enhance the system's performance. In this paper, we devise a novel agent-based scheduling mechanism in cloud computing environment to allocate real-time tasks and dynamically provision resources. In contrast to traditional contract net protocols, we employ a bidirectional announcement-bidding mechanism and the collaborative process consists of three phases, i.e., basic matching phase, forward announcement-bidding phase and backward announcement-bidding phase. Moreover, the elasticity is sufficiently considered while scheduling by dynamically adding virtual machines to improve schedulability. Furthermore, we design calculation rules of the bidding values in both forward and backward announcement-bidding phases and two heuristics for selecting contractors. On the basis of the bidirectional announcement-bidding mechanism, we propose an agent-based dynamic scheduling algorithm named ANGEL for real-time, independent and aperiodic tasks in clouds. Extensive experiments are conducted on CloudSim platform by injecting random synthetic workloads and the workloads from the last version of the Google cloud tracelogs to evaluate the performance of our ANGEL. The experimental results indicate that ANGEL can efficiently solve the real-time task scheduling problem in virtualized clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to re-authenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As clouds have been deployed widely in various fields, the reliability and availability of clouds become the major concern of cloud service providers and users. Thereby, fault tolerance in clouds receives a great deal of attention in both industry and academia, especially for real-time applications due to their safety critical nature. Large amounts of researches have been conducted to realize fault tolerance in distributed systems, among which fault-tolerant scheduling plays a significant role. However, few researches on the fault-tolerant scheduling study the virtualization and the elasticity, two key features of clouds, sufficiently. To address this issue, this paper presents a fault-tolerant mechanism which extends the primary-backup model to incorporate the features of clouds. Meanwhile, for the first time, we propose an elastic resource provisioning mechanism in the fault-tolerant context to improve the resource utilization. On the basis of the fault-tolerant mechanism and the elastic resource provisioning mechanism, we design novel fault-tolerant elastic scheduling algorithms for real-time tasks in clouds named FESTAL, aiming at achieving both fault tolerance and high resource utilization in clouds. Extensive experiments injecting with random synthetic workloads as well as the workload from the latest version of the Google cloud tracelogs are conducted by CloudSim to compare FESTAL with three baseline algorithms, i.e., Non-M igration-FESTAL (NMFESTAL), Non-Overlapping-FESTAL (NOFESTAL), and Elastic First Fit (EFF). The experimental results demonstrate that FESTAL is able to effectively enhance the performance of virtualized clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data deduplication is a technique for eliminating duplicate copies of data, and has been widely used in cloud storage to reduce storage space and upload bandwidth. However, there is only one copy for each file stored in cloud even if such a file is owned by a huge number of users. As a result, deduplication system improves storage utilization while reducing reliability. Furthermore, the challenge of privacy for sensitive data also arises when they are outsourced by users to cloud. Aiming to address the above security challenges, this paper makes the first attempt to formalize the notion of distributed reliable deduplication system. We propose new distributed deduplication systems with higher reliability in which the data chunks are distributed across multiple cloud servers. The security requirements of data confidentiality and tag consistency are also achieved by introducing a deterministic secret sharing scheme in distributed storage systems, instead of using convergent encryption as in previous deduplication systems. Security analysis demonstrates that our deduplication systems are secure in terms of the definitions specified in the proposed security model. As a proof of concept, we implement the proposed systems and demonstrate that the incurred overhead is very limited in realistic environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The notion of database outsourcing enables the data owner to delegate the database management to a cloud service provider (CSP) that provides various database services to different users. Recently, plenty of research work has been done on the primitive of outsourced database. However, it seems that no existing solutions can perfectly support the properties of both correctness and completeness for the query results, especially in the case when the dishonest CSP intentionally returns an empty set for the query request of the user. In this paper, we propose a new verifiable auditing scheme for outsourced database, which can simultaneously achieve the correctness and completeness of search results even if the dishonest CSP purposely returns an empty set. Furthermore, we can prove that our construction can achieve the desired security properties even in the encrypted outsourced database. Besides, the proposed scheme can be extended to support the dynamic database setting by incorporating the notion of verifiable database with updates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Big data is an emerging hot research topic due to its pervasive application in human society, such as government, climate, finance, and science. Currently, most research work on big data falls in data mining, machine learning, and data analysis. However, these amazing top-level killer applications would not be possible without the underneath support of networking due to their extremely large volume and computing complexity, especially when real-time or near-real-time applications are demanded.