172 resultados para microinjection
Cardiovascular effects of noradrenaline microinjected into the insular cortex of unanesthetized rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dopamine (DA) is known as a primary regulator of prolactin secretion (PRL) and angiotensin II (Ang II) has been recognized as one brain inhibitory factor of this secretion. In this work, estrogen-primed or unprimed ovariectornized rats were submitted to the microinjection of saline or Ang II after previous microinjection of saline or of da antagonist (haloperidol, sulpiride or SCH) both in the medial preoptic area (MPOA). Our study of these interactions has shown that 1) estrogen-induced PRL secretion is mediated by Ang II and da actions in the MPOA, i.e. very high plasma PRL would be prevented by inhibitory action of Ang II, while very low levels would be prevented in part by stimulatory action of da through D-2 receptors, 2) the inhibitory action of Ang II depends on estrogen and is mediated in part by inhibitory action of da through D, receptors and in other part by inhibition of stimulatory action of da through D2 receptors.
Resumo:
Peripheral chemoreflex activation with potassium cyanide (KCN) in awake rats or in the working heart-brainstem preparation (WHBP) produces: (a) a sympathoexcitatory/pressor response; (b) bradycardia; and (c) an increase in the frequency of breathing. Our main aim was to evaluate neurotransmitters involved in mediating the sympathoexcitatory component of the chemoreflex within the nucleus tractus solitarii (NTS). In previous studies in conscious rats, the reflex bradycardia, but not the pressor response, was reduced by antagonism of either ionotropic glutamate or purinergic P2 receptors within the NTS. In the present study we evaluated a possible dual role of both P2 and NMDA receptors in the NTS for processing the sympathoexcitatory component (pressor response) of the chemoreflex in awake rats as well as in the WHBP. Simultaneous blockade of ionotropic glutamate receptors and P2 receptors by sequential microinjections of kynurenic acid (KYN, 2 nmol (50 nl)(-1)) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS, 0.25 nmol (50 nl)(-1)) into the commissural NTS in awake rats produced a significant reduction in both the pressor (+38 +/- 3 versus +8 +/- 3 mmHg) and bradycardic responses (-172 +/- 18 versus -16 +/- 13 beats min(-1); n = 13), but no significant changes in the tachypnoea measured using plethysmography (270 +/- 30 versus 240 +/- 21 cycles min(-1), n = 7) following chemoreflex activation in awake rats. Control microinjections of saline produced no significant changes in these reflex responses. In WHBP, microinjection of KYN (2 nmol (20 nl)(-1)) and PPADS (1.6 nmol (20 nl)(-1)) into the commissural NTS attenuated significantly both the increase in thoracic sympathetic activity (+52 +/- 2% versus +17 +/- 1%) and the bradycardic response (-151 +/- 17 versus -21 +/- 3 beats min(-1)) but produced no significant changes in the increase of the frequency of phrenic nerve discharge (+0.24 +/- 0.02+0.20 +/- 0.02 Hz). The data indicate that combined microinjections of PPADS and KYN into the commissural NTS in both awake rats and the WHBP are required to produce a significant reduction in the sympathoexcitatory response (pressor response) to peripheral chemoreflex activation. We conclude that glutamatergic and purinergic mechanisms are part of the complex neurotransmission system of the sympathoexcitatory component of the chemoreflex at the level of the commissural NTS.
Resumo:
Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), I.V..), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 M NaCl, 0.18 ml (100 g body weight)(-1), I.V.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, I.V.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-D beta H-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nitric oxide modulates the cardiovascular effects elicited by acetylcholine in the NTS of awake rats
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There are conflicting results on the function of 5-HT in anxiety and depression. To reconcile this evidence, Deakin and Graeff have suggested that the ascending 5-HT pathway that originates in the dorsal raphe nucleus (DRN) and innervates the amygdala and frontal cortex facilitates conditioned fear, while the DRN-periventricular pathway innervating the periventricular and periaqueductal gray matter inhibits inborn fight/flight reactions to impending danger, pain, or asphyxia. To study the role of the DRN 5-HT system in anxiety, we microinjected 8-OH-DPAT into the DRN to inhibit 5 HT release. This treatment impaired inhibitory avoidance (conditioned fear) without affecting one-way escape (unconditioned fear) in the elevated T-maze, a new animal model of anxiety. We also applied three drug treatments that increase 5-HT release from DRN terminals: 1) intra-DRN microinjection of the benzodiazepine inverse agonist FG 4172, 2) intra-DRN microinjection of the excitatory amino acid kainic acid, and 3) intraperitoneal injection of the 5-HT releaser and uptake blocker D-fenfluramine. All treatments enhanced inhibitory avoidance in the T-maze. D-Fenfluramine and intra-DRN kainate also decreased one-way escape. In healthy volunteers, D-fenfluramine and the 5-HT agonist mCPP (mainly 5-HT2C) increased, while the antagonists ritanserin (5-HT2A/(2C)) and SR 46349B (5-HT2A) decreased skin conductance responses to an aversively conditioned stimulus (tone). In addition, D-fenfluramine decreased, whereas ritanserin increased subjective anxiety induced by simulated public speaking, thought to represent unconditioned anxiety. Overall, these results are compatible with the above hypothesis. Deakin and Graeff have suggested that the pathway connecting the median raphe nucleus (MRN) to the dorsal hippocampus promotes resistance to chronic, unavoidable stress. In the present study, we found that 24 h after electrolytic lesion of the rat MRN glandular gastric ulcers occurred, and the immune response to the mitogen concanavalin A was depressed. Seven days after the same lesion, the ulcerogenic effect of restraint was enhanced. Microinjection of 8-OH-DPAT, the nonselective agonist 5-MeO-DMT, or the 5-HT uptake inhibitor zimelidine into the dorsal hippocampus immediately after 2 h of restraint reversed the deficits of open arm exploration in the elevated plus-maze, measured 24 h after restraint. The effect of the two last drugs was antagonized by WAY-100135, a selective 5-HT1A receptor antagonist. These results are compatible with the hypothesis that the MRN-dorsal hippocampus 5-HT system attenuates stress by facilitation of hippocampal 5-HT1A-mediated neurotransmission. Clinical implications of these results are discussed, especially with regard to panic disorder and depression.
Resumo:
This study was performed to investigate the effect of lesion of the anteroventral third ventricle (AV3V) region on the pressor, bradycardic, dipsogenic, natriuretic, kaliuretic, and antidiuretic responses induced by cholinergic activation of the subfornical organ (SFO) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with a stainless steel cannula directly into the SFO. Microinjection of the cholinergic agonist carbachol (2 nmol) into the SFO of sham rats induced natriuresis (563 +/- 70 mueq/120 min), kaliuresis (205 +/- 13 mueq/120 min), antidiuresis (10.4 +/- 0.5 ml/120 min), water intake (9.3 +/-1.4 ml/h), bradycardia (-42 +/- 11 beats/min), and increased mean arterial pressure (53 +/- 3 mmHg). In AV3V-lesioned rats (1-5 and 14-18 days), there was a reduction of natriuresis (23 +/-11 and 105 +/- 26 mueq/120 min, respectively), kaliuresis (92 +/- 16 and 100 +/- 17 mueq/120 min), water intake (2.5 +/- 0.9 and 1.8 +/- 1.0 ml/h), and arterial pressure increase (17 +/- 2 and 16 +/- 2 mmHg) induced by carbachol into the SFO. Increased antidiuresis (6.0 +/- 1.0 and 5.2 +/- 0.7 ml/120 min, respectively) and tachycardia (39 +/- 4 and 15 +/- 12 beats/min) instead of bradycardia were also observed in both groups of AV3V-lesioned rats. These results show that cholinergic activation of the rat SFO produces marked natriuresis and kaliuresis in addition to the well-known pressor and dipsogenic responses. They also show that the AV3V region plays an important role in the cardiovascular, fluid, and electrolytic changes induced by cholinergic activation of the SFO in rats.
Resumo:
In the present study we investigated whether interruption of the chemoreceptor reflex by an electrolytic lesion of the commissural subnucleus of the nucleus tractus solitarii (commNTS) influenced presser and bradycardic responses induced by microinjection of L-glutamate (L-Glu) into the medial NTS (mNTS) of conscious rats. Seven days after sham lesions, seven rats demonstrated significant presser [change in mean arterial pressure (MAP) = +33 +/- 3 mmHg] and bradycardic [change in heart rate (HR) = -74 +/- 8 beats/min (bpm)] responses to chemoreceptor reflex activation by intravenous injection of KCN. Likewise, L-Glu (1 nmol in 100 nl) injected into the mNTS in sham rats induced presser (+29 +/- 2 mmHg) and bradycardic responses (-90 +/- 8 bpm). However, in 11 rats with lesions in commNTS, presser and bradycardic chemoreceptor reflex responses were abolished, and injection of L-Glu into the mNTS decreased MAP (-14 +/- 6 mmHg) and HR (-59 +/- 16 bpm) as is reported in anesthetized control rats. We conclude that presser responses induced by L-Glu microinjected into the baroreceptor reflex region of mNTS in conscious rats depend on the integrity of the commNTS, which plays an important role in central chemoreceptor reflex pathways.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia.Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2).Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea.Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The microinjection of carbachol into the medial preoptic area (MPO) of the rat induced natriuresis, kaliuresis and anti-diuresis in a dose-related manner. Atropine blocked all responses to carbachol. Hexamethonium impaired the dose-response effect of carbachol on kaliuresis, but had no effect on natriuresis and enhanced the antidiuretic effect of carbachol. Nicotine alone had no effects, but pre-treatment with nicotine enhanced the responses to carbachol. These data show that activity of the muscarinic receptors of the MPO increases renal electrolyte and reduces water excretion. They also suggest that nicotinic receptors have an inhibitory effect on water excretion. Nicotine could act through mechanisms unrelated to nicotinic receptors to enhance the effect of the carbachol. © 1989.