884 resultados para microcrystalline cellulose
Resumo:
Three native freshwater crayfish Cherax species are farmed in Australia namely; Redclaw (Cherax quadricarinatus), Marron (C. tenuimanus), and Yabby (C. destructor). Lack of appropriate data on specific nutrient requirements for each of these species, however, has constrained development of specific formulated diets and hence current use of over-formulated feeds or expensive marine shrimp feeds, limit their profitability. A number of studies have investigated nutritional requirements in redclaw that have focused on replacing expensive fish meal in formulated feeds with non-protein, less expensive substitutes including plant based ingredients. Confirmation that freshwater crayfish possess endogenous cellulase genes, suggests their potential ability to utilize complex carbohydrates like cellulose as nutrient sources in their diet. To date, studies have been limited to only C. quadricarinatus and C. destructor and no studies have compared the relative ability of each species to utilize soluble cellulose in their diets. Individual feeding trials of late-juveniles of each species were conducted separately in an automated recirculating culture system over 12 week cycles. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch. Water temperature, conductivity and pH were maintained at constant and optimum levels for each species. Animals were fed at 3% of their body weight twice daily and wet body weight was recorded bi-weekly. At the end of experiment, all animals were harvested, measured and midgut gland extracts assayed for alpha-amylase, total protease and cellulase activity levels. After the trial period, redclaw fed with RD showed significantly higher (p<0.05) specific growth rate (SGR) compare with animals fed the TD while SGR of marron and yabby fed the two diets were not significantly different (p<0.05). Cellulase expression levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD. Amylase and protease activity in all three species were significantly higher in the animals fed with RD (Table 1). These results indicate that test animals of all species can utilize starch better than dietary soluble cellulose in their diet and inclusion of 20% soluble cellulose in diets does not appear to have any significant negative effect on their growth rate but survival was impacted in C. quadricarinatus while not in C. tenuimanus or C. destructor.
Resumo:
The current study evaluated the effect of soluble dietary cellulose on growth, survival and digestive enzyme activity in three endemic, Australian freshwater crayfish species (redclaw: Cherax quadricarinatus, marron: C. tenuimanus, yabby: C. destructor). Separate individual feeding trials were conducted for late-stage juveniles from each species in an automated recirculating freshwater, culture system. Animals were fed either a test diet (TD) that contained 20% soluble cellulose or a reference diet (RD) substituted with the same amount of corn starch, over a 12 week period. Redclaw fed with RD showed significantly higher (p<0.05) specific growth rates (SGR) compared with animals fed the TD, while SGR of marron and yabby fed the two diets were not significantly different. Expressed cellulase activity levels in redclaw were not significantly different between diets. Marron and yabby showed significantly higher cellulase activity when fed the RD (p<0.05). Amylase and protease activity in all three species were significantly higher in the animals fed with RD (p<0.05). These results indicate that test animals of all three species appear to utilize starch more efficiently than soluble dietary cellulose in their diet. The inclusion of 20% soluble cellulose in diets did not appear, however, to have a significant negative effect on growth rates.
Resumo:
The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction: 2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.
Resumo:
An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.
Resumo:
Switchgrass was treated by 1% (w/w) H₂SO₄in batch tube reactors at temperatures ranging from 140–220°C for up to 60 minutes. In this study, release patterns of glucose, 5-hydroxymethylfurfural (5-HMF), and levulinic acid from switchgrass cellulose were investigated through a mechanistic kinetic model. The predictions were consistent with the measured products of interest when new parameters reflecting the effects of reaction limitations, such as cellulose crystallinity, acid soluble lignin–glucose complex (ASL–glucose) and humins that cannot be quantitatively analyzed, were included. The new mechanistic kinetic model incorporating these parameters simulated the experimental data with R² above 0.97. Results showed that glucose yield was most sensitive to variations in the parameter regarding the cellulose crystallinity at low temperatures (140–180°C), while the impact of crystallinity on the glucose yield became imperceptible at elevated temperatures (200–220 °C). Parameters related to the undesired products (e.g. ASL–glucose and humins) were the most sensitive factors compared with rate constants and other additional parameters in impacting the levulinic acid yield at elevated temperatures (200–220°C), while their impacts were negligible at 140–180°C. These new findings provide a more rational explanation for the kinetic changes in dilute acid pretreatment performance and suggest that the influences of cellulose crystallinity and undesired products including ASL–glucose and humins play key roles in determining the generation of glucose, 5-HMF and levulinic acid from biomass-derived cellulose.
Resumo:
This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network,reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.
Resumo:
The dinucleotide dpTpA held electrostatically on DEAE cellulose was used as an affinity column for the purification of dpTpA specific antibodies. Chromatography of the y-globulin fraction from dpTpA specific antisera on this column resulted in the retention of dpTpA specific antibodies which were later eluted along with the bound dpTpA using 1M NaC1. Dextran coated charcoal was the method of choice for the dissociation and removal of dpTpA bound to the antibodies. This method may extend itself to the purification of antibodies specific for other oligonucleotides.
Resumo:
A strip of Whatman filter paper (α-cellulose) dipped in an aqueous solution of dihydrazinium phosphate, (N2H5)2HPO4(DHP), and dried, carbonized without flame when ignited. The observed flame retardancy of DHP on α-cellulose has been studied using TG, DTA and mass spectrometry. Dihydrazinium phosphate appears to catalyze the dehydration of α-cellulose, minimizing the depolymerization which produces flammable tars, with the formation of water and char. Flame retardancy of DHP is compared with that of diammonium phosphate and phosphoric acid.
Resumo:
A procedure has been developed for the isolation of very low density lipoproteins from hen's egg yolk plasma using DEAE-cellulose chromatography. This procedure is rapid and does not require ultracentrifugation and should, therefore, serve as a useful procedure for use in laboratories where this facility does not exist.
Resumo:
Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.
Resumo:
Wood is an important material for the construction and pulping industries. Using x-ray diffraction the microfibril angle of Sitka spruce wood was studied in the first part of this thesis. Sitka spruce (Picea sitchensis [Bong.] Carr.) is native to the west coast of North America, but due to its fast growth rate, it has also been imported to Europe. So far, its nanometre scale properties have not been systematically characterised. In this thesis the microfibril angle of Sitka spruce was shown to depend significantly on the origin of the tree in the first annual rings near the pith. Wood can be further processed to separate lignin from cellulose and hemicelluloses. Solid cellulose can act as a reducer for metal ions and it is also a porous support for nanoparticles. By chemically reducing nickel or copper in the solid cellulose support it is possible to get small nanoparticles on the surfaces of the cellulose fibres. Cellulose supported metal nanoparticles can potentially be used as environmentally friendly catalysts in organic chemistry reactions. In this thesis the size of the nickel and copper containing nanoparticles were studied using anomalous small-angle x-ray scattering and wide-angle x-ray scattering. The anomalous small-angle x-ray scattering experiments showed that the crystallite size of the copper oxide nanoparticles was the same as the size of the nanoparticles, so the nanoparticles were single crystals. The nickel containing nanoparticles were amorphous, but crystallised upon heating. The size of the nanoparticles was observed to be smaller when the reduction of nickel was done in aqueous ammonium hydrate medium compared to reduction made in aqueous solution. Lignin is typically seen as the side-product of wood industries. Lignin is the second most abundant natural polymer on Earth, and it possesses potential to be a useful material for many purposes in addition to being an energy source for the pulp mills. In this thesis, the morphology of several lignins, which were produced by different separation methods from wood, was studied using small-angle and ultra small-angle x-ray scattering. It was shown that the fractal model previously proposed for the lignin structure does not apply to most of the extracted lignin types. The only lignin to which the fractal model could be applied was kraft lignin. In aqueous solutions the average shape of the low molar mass kraft lignin particles was observed to be elongated and flat. The average shape does not necessarily correspond to the shape of the individual particles because of the polydispersity of the fraction and due to selfassociation of the particles. Lignins, and especially lignosulfonate, have many uses as dispersants, binders and emulsion stabilisers. In this thesis work the selfassociation of low molar mass lignosulfonate macromolecules was observed using small-angle x-ray scattering. By taking into account the polydispersity of the studied lignosulfonate fraction, the shape of the lignosulfonate particles was determined to be flat by fitting an oblate ellipsoidal model to the scattering intensity.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010