984 resultados para microbial resistance
Resumo:
Since 1990 multiresistant (MR) Salmonella enterica serotype Typhimurium definitive phage-type (DT) 104 (MR DT104) and closely related phage types have emerged as a worldwide health problem in humans and food animals. In this study the presence of the bla(CARB-2) (ampicillin), cmlA (chloramphenicol), aadA2 (streptomycin/spectinomycin), sul1 (sulphonamide), and tetG (tetracycline) resistance genes in isolates of one such phage type, U302, have been determined. In addition bla(TEM) I primers have been used for the detection of TEM-type beta-lactamases. Isolates have also been characterized by plasmid profile and pulsed field gel electrophoresis (PFGE). Thirty-three of 39 isolates were positive for blaCARB-2, cmlA, aadA2, sul1 and tetG, four for bla(TEM), aadA2 and sul1, one for aadA2 and sul1, and one for blaTEM only. bla(TEM)-mediated ampicillin resistance was transferred to Escherichia coli K12 from three isolates along with other resistance markers, including resistance to chloramphenicol, streptomycin, spectinomycin, sulphonamides, and tetracyclines. Strains carried up to 6 plasmids and 34 plasmid profiles were identified. Although the majority of strains (33/39) produced a PFGE profile identical to that predominant in MR DT104, six different patterns were generated demonstrating the presence of various clones within MR U302. The results show that the majority of the MR U302 strains studied possessed the same antibiotic resistance genes as MR DT104. However, isolates with distinctive PFGE patterns can have different mechanisms of resistance to ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracyclines. Such resistance genes may be borne on transmissible plasmids.
Resumo:
Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome.
Resumo:
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Resumo:
Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.
Resumo:
Bacterial isolates from natural sites with high toxic and heavy metal contamination more frequently contain determinants for resistance to antimicrobials. Natural strains were isolated from the ingesta and external slime of Salmo salar (Linnaeus, 1758) and Salvelinusjontinalis (Mitchell, 1814). Fish specimens were acquired from Casco Bay hatcheries, Casco, ME where there is no history of antibiotic use. Seventy-nine bacterial strains, including many well-documented salmonid commensals (an association from which the fish derives no benefit), were identified using 165 rRNA gene sequencing. Mercury resistant isolates were selected for initially on 25μM HgCI2. Strains were then grown at 20-24°C on Trypticase Soy Agar (TSA) plates containing 0-1000μM HgCl2 or 0-130μM Phenyl Mercuric Acetate (PMA). Mercury in the hatchery feed water due to ubiquitous non-point source deposition has selected for the mercury resistance observed in bacterial strains. Antibiotic resistance determinations, as measured by Minimum Inhibitory Concentration MIC) assays were performed on the 79 bacterial isolates using Sensititrel antimicrobial susceptibility panels. A positive linear correlation between the mercury (pMA and HgCl2) MIC's and antibiotic resistance for all observed strains was demonstrated. Conjugation experiments with Pseudomonas, Aeromonas, and Azomonas donors confirmed phenotypic transfer of penicillin and cephem resistances to Escherichia coli DH5a recipients. Conjugation experiments with Pseudomonas donors showed minimal transfer of tetracycline and minoglycoside resistances to Escherichia coli DH5a recipients. Our study suggests that the accumulation of antimicrobial resistances observed in these natural bacterial populations may be due to the indirect selective pressure exerted by environmental mercury.
Resumo:
The aim of this study was to determine the antimicrobial resistance patterns of Salmonella strains isolated from slaughter-age pigs and environmental samples collected at modern swine raising facilities in Brazil. Seventeen isolates of six serotypes of Salmonella enterica subsp. enterica were isolated out of 1,026 collected samples: Salmonella Typhimurium (1), Salmonella Agona (5), Salmonella Sandiego (5), Salmonella Rissen (1), Salmonella Senftenberg (4), and Salmonella Javiana (1). Resistance patterns were determined to extended-spectrum penicillin (ampicillin), broad-spectrum cephalosporins (cefotaxime and ceftriaxone), aminoglycosides (streptomycin, neomycin, gentamicin, amikacin, and tobramycin), narrow-spectrum quinolone (nalidixic acid), broad-spectrum quinolone (ciprofloxacin and norfloxacin), tetracycline, trimethoprim, and chloramphenicol. Antimicrobial resistance patterns varied among serotypes, but isolates from a single serotype consistently showed the same resistance profile. All isolates were resistant to tetracycline, streptomycin, and nalidixic acid. One isolate, Salmonella Rissen, was also resistant to cefotaxime and tobramycin. All serotypes were susceptible to ceftriaxone, norfloxacin, ciprofloxacin, ampicillin, gentamicin, and chloramphenicol. The high resistance to tetracycline and streptomycin may be linked to their common use as therapeutic drugs on the tested farms. No relation was seen between nalidixic acid and fluoroquinolone resistance.
Resumo:
A study was carried out to assess the stability of antimicrobial susceptibility of wild isolates upon long-term storage using fifty-three Escherichia coli strains isolated in 1978 from feces of healthy children from the Amazon region in Brazil, exposed to low levels of antimicrobial agents, and examined for resistance to mercury and four antibiotics. All of the strains were kept in Lignieres medium at room temperature and were transferred to fresh media four times during this period. Thirty-five out of the 53 strains analyzed in 1978 were viable. Upon recovery, antibiotic and mercury resistance was estimated. All of the 35 strains maintained their original phenotype in a stable fashion, except for one multiresistant strain which became susceptible to kanamycin. Fifty-four percent of the strains exhibited a resistance phenotype, among which 47% had conjugative plasmids.
Resumo:
This study evaluated the occurrence of enteric bacteria and pseudomonads resistant to tetracycline and beta-lactams in the oral cavity of patients exhibiting gingivitis (n=89); periodontitis (n=79), periodontally healthy (n=50) and wearing complete dentures (n=41). Microbial identification and presence of resistance markers associated with the production of beta-lactamases and tetracycline resistance were performed by using biochemical tests and PCR. Susceptibility tests were carried out in 201 isolates of enteric cocci and rods. Resistance to ampicillin, amoxicillin/clavulanic acid, imipenem, meropenem and tetracycline was detected in 57.4%, 34.6%, 2.4%, 1.9% and 36.5% of the isolates, respectively. beta-lactamase production was observed in 41.2% of tested microorganisms, while the most commonly found beta-lactamase genetic determinant was gene bla(TEM). Tetracycline resistance was disseminated and a wide scope of tet genes were detected in all studied microbial genus.
Resumo:
Abstract Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25°C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10).
Resumo:
Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.
Resumo:
A survey of starter and probiotic cultures was carried out to determine the current antibiotic resistance situation in microbial food additives in Switzerland. Two hundred isolates from 90 different sources were typed by molecular and other methods to belong to the genera Lactobacillus (74 samples), Staphylococcus (33 samples), Bifidobacterium (6 samples), Pediococcus (5 samples), or were categorized as lactococci or streptococci (82 samples). They were screened for phenotypic resistances to 20 antibiotics by the disk diffusion method. Twenty-seven isolates exhibiting resistances that are not an intrinsic feature of the respective genera were further analyzed by microarray hybridization as a tool to trace back phenotypic resistances to specific genetic determinants. Their presence was finally verified by PCR amplification or Southern hybridization. These studies resulted in the detection of the tetracycline resistance gene tet(K) in 5 Staphylococcus isolates used as meat starter cultures, the tetracycline resistance gene tet(W) in the probiotic cultures Bifidobacterium lactis DSM 10140 and Lactobacillus reuteri SD 2112 (residing on a plasmid), and the lincosamide resistance gene lnu(A) (formerly linA) in L. reuteri SD 2112.
Resumo:
Microbial fuel cell (MFC) research has focused mostly on producing electricity using soluble organic and inorganic substrates. This study focused on converting solid organic waste into electricity using a two-stage MFC process. In the first stage, a hydrolysis reactor produced soluble organic substrates from solid organic waste. The soluble substrates from the hydrolysis reactor were pumped to the second stage reactor: a continuous-flow, air-cathode MFC. Maximum power output (Pmax) of the MFC was 296 mW/m3 at a current density of 25.4 mA/m2 while being fed only leachate from the first stage reactor. Addition of phosphate buffer increased Pmax to 1,470 mW/m3 (89.4 mA/m2), although this result could not be duplicated with repeated polarization testing. The minimum internal resistance achieved was 77 Omega with leachate feed and 17 Omega with phosphate buffer. The low coulombic efficiency (
Resumo:
BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.
Resumo:
The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method.
Resumo:
The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.