928 resultados para micro-alloying


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topic recommendation can help users deal with the information overload issue in micro-blogging communities. This paper proposes to use the implicit information network formed by the multiple relationships among users, topics and micro-blogs, and the temporal information of micro-blogs to find semantically and temporally relevant topics of each topic, and to profile users' time-drifting topic interests. The Content based, Nearest Neighborhood based and Matrix Factorization models are used to make personalized recommendations. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on a real world dataset that collected from Twitter.com.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the factors affecting the successful provision of micro-credit to people at the bottom of the pyramid and discusses the activities required to support entrepreneurial activities in a peri-urban African setting. The findings enable us to better understand why micro-credit, though useful, is only part of the solution, in a setting characterized by extreme resource constraints with an institutional fabric lacking the infrastructure that assists market development. We depict the crafting of new entrepreneurial activity as an ongoing process and present an emerging research agenda for future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bananas (Musa sp) are one of the most important food crops in the world and provide a staple food and source of income in many households especially in Africa. Diseases are a major constraint to production with bunchy top, caused by Banana bunchy top virus (BBTV) generally considered the most important virus disease of bananas worldwide. Of the fungal diseases, Fusarium wilt, caused by the Fusarium oxysporum f.sp cubense (Foc), and black Sigatoka, caused by Mycosphaerella fijiensis, are arguably two of the most important and cause significant yield losses. The low fertility of commercially important banana cultivars has hampered efforts to generate disease resistance using conventional breeding. Possible alternative strategies to generate or increase disease resistance are through genetic engineering or by manipulation of the innate plant defence mechanisms, namely systemic acquired resistance (SAR). The first research component of this thesis describes attempts to generate BBTV-resistant banana plants using a genetic modification approach. The second research component of the thesis focused on the identification of a potential marker gene associated with SAR in banana plants and a comparison of the expression levels of the marker gene in response to biotic and abiotic stresses, and chemical inducers. Previous research at QUT CTCB showed that replication of BBTV DNA components in banana embryogenic cell suspensions (ECS) was abolished following co-bombardment with 1.1mers of mutated BBTV DNA-R. BBTV DNA-R encodes the master replication protein (Rep) and is the only viral protein essential for BBTV replication. In this study, ECS of banana were stably transformed with the same constructs, each containing a different mutation in BBTV DNA-R, namely H41G, Y79F and K187M, to examine the effect on virus replication in stably transformed plants. Cells were also transformed with a construct containing a native BBTV Rep. A total of 16, 16, 11 and five lines of stably transformed banana plants containing the Y79F, H41G, K187M and native Rep constructs, respectively, were generated. Of these, up to nine replicates from Y79F lines, four H41G lines, seven K187M lines and three native Rep lines were inoculated with BBTV by exposure to viruliferous aphids in two separate experiments. At least one replicate from each of the nine Y79F lines developed typical bunchy top symptoms and all tested positive for BBTV using PCR. Of the four H41G lines tested, at least one replicate from three of the lines showed symptoms of bunchy top and tested positive using PCR. However, none of the five replicates of one H41G line (H41G-3) developed symptoms of bunchy top and none of the plants tested positive for BBTV using PCR. Of the seven K187M lines, at least one replicate of all lines except one (K187M-1) developed symptoms of bunchy top and tested positive for BBTV. Importantly, none of the four replicates of line K187M-1 showed symptoms or tested positive for BBTV. At least one replicate from each of the three native Rep lines developed symptoms and tested positive for BBTV. The H41G-3 and K187M-1 lines possibly represent the first transgenic banana plants generated using a mutated Rep strategy. The second research component of this thesis focused on the identification of SAR-associated genes in banana and their expression levels in response to biotic and abiotic stresses and chemical inducers. The impetus for this research was the observation that tissue-cultured (TC) banana plants were more susceptible to Fusarium wilt disease (and possibly bunchy top disease) than plants grown from field-derived suckers, possibly due to decreased levels of SAR gene expression in the former. In this study, the pathogenesis-related protein 1 (PR-1) gene was identified as a potential marker for SAR gene expression in banana. A quantitative real-time PCR assay was developed and optimised in order to determine the expression of PR-1, with polyubiquitin (Ubi-1) found to be the most suitable reference gene to enable relative quantification. The levels of PR-1 expression were subsequently compared in Lady Finger and Cavendish (cv. Williams) banana plants grown under three different environmental conditions, namely in the field, the glass house and in tissue-culture. PR-1 was shown to be expressed in both cultivars growing under different conditions. While PR-1 expression was highest in the field grown bananas and lowest in the TC bananas in Lady Finger cultivar, this was not the case in the Cavendish cultivar with glass house plants exhibiting the lowest PR-1 expression compared with tissue culture and field grown plants. The important outcomes of this work were the establishment of a qPCR-based assay to monitor PR-1 expression levels in banana and a preliminary assessment of the baseline PR-1 expression levels in two banana cultivars under three different growing conditions. After establishing the baseline PR-1 expression levels in Cavendish bananas, a study was done to determine whether PR-1 levels could be increased in these plants by exposure to known banana pathogens and non-pathogens, and a known chemical inducer of SAR. Cavendish banana plants were exposed to pathogenic Foc subtropical race 4 (FocSR4) and non-pathogenic Foc race 1 (Foc1), as well as two putative inducers of resistance, Fusarium lycopersici (Fol) and the chemical, acibenzolar-S-methyl (BION®). Tissue culture bananas were acclimatised under either glass house (TCS) or field (TCH) conditions and treatments were carried out in a randomised complete block design. PR-1 expression was determined using qPCR for both TCS and TCH samples for the period 12-72h post-exposure. Treatment of TCH plants using Foc1 and FocSR4 resulted in 120 and 80 times higher PR-1 expression than baseline levels, respectively. For TCS plants treated with Foc1, PR-1 expression was 30 times higher than baseline levels at 12h post-exposure, while TCS plants treated with FocSR4 showed the highest PR-1 expression (20 times higher than baseline levels) at 72h post-exposure. Interestingly, when TCS plants were treated with Fol there was a marked increase of PR-1 expression at 12 h and 48 h following treatment which was 4 and 8 times higher than the levels observed when TCS plants were treated with Foc1 and FocSR4, respectively. In contrast, when TCH plants were treated with Fol only a slight increase in PR-1 expression was observed at 12 h, which eventually returned to baseline levels. Exposure of both TCS and TCH plants to BION® resulted in no effect on PR-1 expression levels at any time-point. The major outcome of the SAR study was that the glass house acclimatised tissue culture bananas exhibited lower PR-1 gene expression compared to field acclimatised tissue culture plants and the identification of Fol as a good candidate for SAR induction in banana plants exhibiting low PR-1 levels. A number of outcomes that foster understanding of both pathogen-derived and plant innate resistance strategies in order to potentially improve banana resistance to diseases were explored in this study and include identification of potential inducers of systemic acquired resistance and a promising mutated Rep approach for BBTV resistance. The work presented in this thesis is the first report on the generation of potential BBTV resistant bananas using the mutated Rep approach. In addition, this is the first report on the status of SAR in banana grown under different conditions of exposure to the biotic and abiotic environment. Further, a robust qPCR assay for the study of gene expression using banana leaf samples was developed and a potential inducer of SAR in tissue culture bananas identified which could be harnessed to increase resistance in tissue culture bananas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While user-generated short online videos have existed since the emergence of video sharing sites in China, they have undergone a process of formalisation and commercialisation, culminating in the wave of micro-movies in recent years. By addressing the wider context of globalisation alongside relevant state policies and shifting viewing habits, this article analyses the local and global causes of this wave. It offers evidence that illustrates how online video service providers in China have adapted in a changing industry landscape as they negotiate state policies, advertiser interests and user preference. It then examines the production and distribution dynamics, where professional producers draw on social media, grassroots creativity and creative talents in regional markets. Finally, it discusses the cultural implications of this process in terms of both the nature and flow of creativity. Based on these analyses, the article also sheds light on the interplay between the state and the market in the context of globalisation and marketisation of media sectors, which becomes more complicated when the state-owned or controlled media enter the emerging market sectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is examine how firms renew their organisational capabilities based on micro organisational processes. Organisational capability development literature points to firms’ failure in capability renewal process. To overcome this inefficiency, it is proposed to integrate dynamic capability and ambidexterity perspectives by studying knowledge integration within product innovation. In this relation, applying micro perspective in studying technology diffusion within Iranian Auto industry revealed micro co-evolutionary relationships between knowledge integration within product innovation and capability development. Furthermore, based on near decomposability principals, the analysis suggested relationships among modularity of product architecture, modularity of organisational modularity and modularity of industry architecture in downstream and upstream value chain. Based on these micro-macro co evolutionary effects, capability development process underlying successful corporate entrepreneurship may be verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was  measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteochondral grafts are common treatment options for joint focal defects due to their excellent functionality. However, the difficulty is matching the topography of host and graft(s) surfaces flush to one another. Incongruence could lead to disintegration particularly when the gap reaches subchondoral region. The aim of this study is therefore to investigate cell response to gap geometry when forming cartilage-cartilage bridge at the interface. The question is what would be the characteristics of such a gap if the cells could bridge across to fuse the edges? To answer this, osteochondral plugs devoid of host cells were prepared through enzymatic decellularization and artificial clefts of different sizes were created on the cartilage surface using laser ablation. High density pellets of heterologous chondrocytes were seeded on the defects and cultured with chondrogenic differentiation media for 35 days. The results showed that the behavior of chondrocytes was a function of gap topography. Depending on the distance of the edges two types of responses were generated. Resident cells surrounding distant edges demonstrated superficial attachment to one side whereas clefts of 150 to 250 µm width experienced cell migration and anchorage across the interface. The infiltration of chondrocytes into the gaps provided extra space for their proliferation and laying matrix; as the result faster filling of the initial void space was observed. On the other hand, distant and fit edges created an incomplete healing response due to the limited ability of differentiated chondrocytes to migrate and incorporate within the interface. It seems that the initial condition of the defects and the curvature profile of the adjacent edges were the prime determinants of the quality of repair; however, further studies to reveal the underlying mechanisms of cells adapting to and modifying the new environment would be of particular interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.