158 resultados para metformin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin may play in important role in the future in helping to prevent the development of diabetes: it is a strong candidate therapy for delaying the onset of the disease and potentially as part of a treatment programme to correct features of the metabolic syndrome. This book celebrates 50 years of research into metformin and its use in the treatment of diabetes. Metformin is still the drug of choice for managing patients with type 2 diabetes and all new drugs are tested in comparison with this, the gold standard. Comprising seven sections, addressing different aspects of research on metformin and its applications, this book is edited by a world class team of expert diabetologists and beautifully presented in two colour throughout. It also includes a bibliography of all papers published on metformin and a complete list of all authors on those papers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The antihyperglycaemic agent metformin is widely used in the treatment of type 2 diabetes. Data from the UK Prospective Diabetes Study and retrospective analyses of large healthcare databases concur that metformin reduces the incidence of myocardial infarction and increases survival in these patients. This apparently vasoprotective effect appears to be independent of the blood glucose-lowering efficacy. Effects of metformin: Metformin has long been known to reduce the development of atherosclerotic lesions in animal models, and clinical studies have shown the drug to reduce surrogate measures such as carotid intima-media thickness. The anti-atherogenic effects of metformin include reductions in insulin resistance, hyperinsulinaemia and obesity. There may be modest favourable effects against dyslipidaemia, reductions in pro-inflammatory cytokines and monocyte adhesion molecules, and improved glycation status, benefiting endothelial function in the macro- and micro-vasculature. Additionally metformin exerts anti-thrombotic effects, contributing to overall reductions in athero-thrombotic risk in type 2 diabetic patients. © 2008 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To compare the efficacy and safety of either continuing or discontinuing rosiglitazone + metformin fixed-dose combination when starting insulin therapy in people with Type 2 diabetes inadequately controlled on oral therapy. Methods: In this 24-week double-blind study, 324 individuals with Type 2 diabetes inadequately controlled on maximum dose rosiglitazone + metformin therapy were randomly assigned to twice-daily premix insulin therapy (target pre-breakfast and pre-evening meal glucose ≤ 6.5 mmol/l) in addition to either rosiglitazone + metformin (8/2000 mg) or placebo. Results: Insulin dose at week 24 was significantly lower with rosiglitazone + metformin (33.5 ± 1.5 U/day, mean ± se) compared with placebo [59.0 ± 3.0 U/day; model-adjusted difference -26.6 (95% CI -37.7, -15,5) U/day, P < 0.001]. Despite this, there was greater improvement in glycaemic control [HbA 1c rosiglitazone + metformin vs. placebo 6.8 ± 0.1 vs. 7.5 ± 0.1%; difference -0.7 (-0.8, -0.5)%, P < 0.001] and more individuals achieved glycaemic targets (HbA1c < 7.0% 70 vs. 34%, P < 0.001). The proportion of individuals reporting at least one hypoglycaemic event during the last 12 weeks of treatment was similar in the two groups (rosiglitazone + metformin vs. placebo 25 vs. 27%). People receiving rosiglitazone + metformin in addition to insulin reported greater treatment satisfaction than those receiving insulin alone. Both treatment regimens were well tolerated but more participants had oedema [12 (7%) vs. 4 (3%)] and there was more weight gain [3.7 vs. 2.6 kg; difference 1.1 (0.2, 2.1) kg, P = 0.02] with rosiglitazone + metformin. Conclusions: Addition of insulin to rosiglitazone + metformin enabled more people to reach glycaemic targets with less insulin, and was generally well tolerated. © 2007 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE: Metformin is widely viewed as the best initial pharmacological option to lower glucose concentrations in patients with type 2 diabetes mellitus. However, the drug is contraindicated in many individuals with impaired kidney function because of concerns of lactic acidosis. OBJECTIVE: To assess the risk of lactic acidosis associated with metformin use in individuals with impaired kidney function. EVIDENCE ACQUISITION: In July 2014, we searched the MEDLINE and Cochrane databases for English-language articles pertaining tometformin, kidney disease, and lactic acidosis in humans between 1950 and June 2014.We excluded reviews, letters, editorials, case reports, small case series, and manuscripts that did not directly pertain to the topic area or that met other exclusion criteria. Of an original 818 articles, 65 were included in this review, including pharmacokinetic/metabolic studies, large case series, retrospective studies, meta-analyses, and a clinical trial. RESULTS: Although metformin is renally cleared, drug levels generally remain within the therapeutic range and lactate concentrations are not substantially increased when used in patients with mild to moderate chronic kidney disease (estimated glomerular filtration rates, 30-60 mL/min per 1.73m2). The overall incidence of lactic acidosis in metformin users varies across studies from approximately 3 per 100 000 person-years to 10 per 100 000 person-years and is generally indistinguishable from the background rate in the overall population with diabetes. Data suggesting an increased risk of lactic acidosis in metformin-treated patients with chronic kidney disease are limited, and no randomized controlled trials have been conducted to test the safety ofmetformin in patients with significantly impaired kidney function. Population-based studies demonstrate that metformin may be prescribed counter to prevailing guidelines suggesting a renal risk in up to 1 in 4 patients with type 2 diabetes mellitus-use which, in most reports, has not been associated with increased rates of lactic acidosis. Observational studies suggest a potential benefit from metformin on macrovascular outcomes, even in patients with prevalent renal contraindications for its use. CONCLUSIONS AND RELEVANCE: Available evidence supports cautious expansion of metformin use in patients with mild to moderate chronic kidney disease, as defined by estimated glomerular filtration rate, with appropriate dosage reductions and careful follow-up of kidney function.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin is the only biguanide antihyperglycemic agent used in the treatment of type 2 (non-insulin dependent) diabetes mellitus. It counters insulin resistance partly by increased insulin action (so-called insulin sensitizing effects) and partly via actions that are not directly insulin dependent. Metformin reduces hepatic glucose output by suppression of gluconeogenesis and glycogenolysis. In skeletal muscle, metformin increases insulin-mediated glucose uptake and glycogen storage. Other actions of metformin that contribute to its blood glucose-lowering effect are reduced fatty acid oxidation and increased glucose turnover, the latter occurring particularly in the splanchnic bed .... © 2007 Copyright © 2007 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combination of metformin hydrochloride (MTF) and glipizide (GLZ) is second-line medication for diabetes mellitus type 2 (DMT2). In the present study, elementary osmotic pump(EOP)tablet is designed to deliver the combination of MTF and GLZ in a sustained and synchronized manner. By analyzing different variables of the formulation, sodium hydrogen carbonate is introduced as pH modifier to improve the release of GLZ, while ethyl cellulose acts as release retardant to reduce the burst release phase of MTF. A two factor, three level face-centered central composite design (FCCD) is applied to investigate the impact of different factors on drug release profile. Compared with conventional tablets, the elementary osmotic pump (EOP) tablet demonstrates a controlled release behavior with relative bioavailability of 99.2% for MTF and 99.3% for GLZ. Data also shows EOP tablet is able to release MTF and GLZ in a synchronized and sustained manner both in vitro and in vivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims: The selective SGLT2 inhibitor dapagliflozin (DAPA) reduces hyperglycaemia independently of insulin secretion or action by inhibiting renal glucose reabsorption. This study (MB102014) is a randomised double-blind, placebo (PBO)-controlled trial of DAPA added to metformin (MET) in T2DM (n=546) inadequately controlled with MET alone. Previously reported short-term data at week 24 showed significant mean reductions in the primary [HbA1c] and secondary [fasting plasma glucose (FPG) and weight] endpoints with DAPA compared to PBO. Here we report efficacy and safety results at week 102 of the long-term extension. Materials and methods: Patients aged 18-77 years with HbA1c 7-10% received DAPA 2.5 mg, 5 mg, 10 mg or PBO, plus open-label MET (≥1500mg/d). Exploratory endpoints at week 102 included changes from baseline in HbA1c, FPG and weight, and were analyzed by longitudinal repeated measures analysis. Results: Overall 71.2% of patients completed 102 weeks of the study; fewer on PBO (63.5%) than on DAPA 2.5 mg, 5 mg, and 10 mg (68.3%, 73.0%, 79.8%), due mainly to more patients on PBO discontinuing for lack of efficacy. At week 102, all DAPA groups showed greater mean reductions from baseline in HbA1c, FPG and weight compared to PBO (table), effects that were similar to those observed at week 24 and maintained throughout the trial. More patients at week 102 also achieved a therapeutic response of HbA1c<7% with DAPA 2.5 mg, 5 mg, and 10 mg (20.7%, 26.4%, 31.5%) than with PBO (15.4%). Adverse events (AEs), serious AEs and AEs leading to discontinuation were balanced across all groups. Signs and symptoms suggestive of genital infection (GenInf) were reported in 11.7%, 14.6%, 12.6% (DAPA 2.5 mg, 5 mg, 10 mg) and 5.1% (PBO) of patients, with 1 discontinuation due to GenInf. Signs and symptoms suggestive of urinary tract infection (UTI) were reported in 8.0%, 8.8%, 13.3% (DAPA 2.5 mg, 5 mg, 10 mg) and 8.0% (PBO), with 1 discontinuation due to UTI. No event of pyelonephritis was reported. Conclusion: In comparison to PBO, DAPA added to MET over 102 weeks demonstrated greater and sustained improvements in glycaemic control, clinically meaningful reduction in weight, and no increased risk of hypoglycaemia in patients with T2DM inadequately controlled with MET alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed cancer in males in Australia, North America, and Europe. If found early and locally confined, CaP can be treated with radical prostatectomy or radiation therapy; however, 25-40% patients will relapse and go on to advanced disease. The most common therapy in these cases is androgen deprivation therapy (ADT), which suppresses androgen production from the testis. Lack of the testicular androgen supply causes cells of the prostate to undergo apoptosis. However, in some cases the regression initially seen with ADT eventually gives way to a growth of a population of cancerous cells that no longer require testicular androgens. This phenotype is essentially fatal and is termed castrate resistant prostate cancer (CRPC). In addition to eventual regression, there are many undesirable side effects which accompany ADT, including development of a metabolic syndrome, which is defined by the U.S. National Library of Medicine as “a combination of medical disorders that increase the risk of developing cardiovascular disease and diabetes.” This project will focus on the effect of ADT induced hyperinsulinemia, as mimicked by treating androgen receptor positive CaP cells with insulin in a serum (hormone) deprived environment. While this side effect is not widely explored, in this thesis it is demonstrated for the first time that insulin upregulates pathways important to CaP progression. Our group has previously shown that during CaP progression, the enzymes necessary for de novo steroidogenesis are upregulated in the LNCaP xenograft model, total steroid levels are increased in tumours compared to pre castrate levels, and de novo steroidogenesis from radio-labelled acetate has been demonstrated. Because of the CaP dependence on AR for survival, we and other groups believe that CaP cells carry out de novo steroidogenesis to survive in androgen deprived conditions. Because (a) men on ADT often develop metabolic syndrome, and (b) men with lifestyle-induced obesity and hyperinsulinemia have worse prognosis and faster disease progression, and because (c) insulin causes steroidogenesis in other cell lines, the hypothesis that insulin may contribute to CaP progression through upregulation of steroidogenesis was explored. Insulin upregulates steroidogenesis enzymes at the mRNA level in three AR positive cell lines, as well as upregulating these enzymes at the protein level in two cell lines. It has also been demonstrated that insulin increases mitochondrial (functional) levels of steroid acute regulatory protein (StAR). Furthermore, insulin causes increased levels of total steroids in and induction of de novo steroid synthesis by insulin has been demonstrated at levels induced sufficient to activate AR. The effect of insulin analogs on CaP steroidogenesis in LNCaP and VCaP cells has also been investigated because epidemiological studies suggest that some of the analogs developed may have more cancer stimulatory effects than normal insulin. In this project, despite the signalling differences between glargine, X10, and insulin, these analogs did not appear to induce steroidogenesis any more potently that normal insulin. The effect of insulin of MCF7breast cancer cells was also investigated with results suggesting that breast cancer cells may be capable of de novo steroidogenesis, and that increase in estradiol production may be exacerbated by insulin. Insulin has also been long known to stimulate lipogenesis in the liver and adipocytes, and has been demonstrated to increase lipogenesis in breast cancer cells; therefore, investigation of the effect of insulin on lipogenesis, which is a hallmark of aggressive cancers, was investigated. In CaP progression sterol regulatory element binding protein (SREBP) is dysregulated and upregulates fatty acid synthase (FASN), acetyl CoA-carboxylase, and other lipogenesis genes. SREBP is important for steroidogenesis and in this project has been shown to be upregulated by insulin in CaP cells. Fatty acid synthesis provides building blocks of membrane growth, provides substrates for acid oxidation, the main energy source for CaP cells, provides building blocks for anti-apoptotic and proinflammatory molecules, and provides molecules that stimulate steroidogenesis. In this project it has been shown that insulin upregulates FASN and ACC, which synthesize fatty acids, as well as upregulating hormone sensitive lipase (HSL), diazepam-binding inhibitor (DBI), and long-chain acyl-CoA synthetase 3 (ACSL3), which contribute to lipid activation of steroidogenesis. Insulin also upregulates total lipid levels and de novo lipogenesis, which can be suppressed by inhibition of the insulin receptor (INSR). The fatty acids synthesized after insulin treatment are those that have been associated with CaP; furthermore, microarray data suggests insulin may upregulate fatty acid biosynthesis, metabolism and arachidonic acid metabolism pathways, which have been implicated in CaP growth and survival. Pharmacological agents used to treat patients with hyperinsulinemia/ hyperlipidemia have gained much interest in regards to CaP risk and treatment; however, the scientific rationale behind these clinical applications has not been examined. This thesis explores whether the use of metformin or simvastatin would decrease either lipogenesis or steroidogenesis or both in CaP cells. Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) inhibitor, which blocks synthesis of cholesterol, the building block of steroids/ androgens. It has also been postulated to down regulate SREBP in other metabolic disorders. It has been shown in this thesis, in LNCaP cells, that simvastatin inhibited and decreased insulin induced steroidogenesis and lipogenesis, respectively, but increased these pathways in the absence of insulin. Conversely, metformin, which activates AMP-activated protein kinase (AMPK) to shut down lipogenesis, cholesterol synthesis, and protein synthesis, highly suppresses both steroidogenesis and lipogenesis in the presence and absence of insulin. Lastly, because it has been demonstrated to increase steroidogenesis in other cell lines, and because the elucidation of any factors affecting steroidogenesis is important to understanding CaP, the effect of IGF2 on steroidogenesis in CaP cells was investigated. In patient samples, as men progress to CRPC, IGF2 mRNA and the protein levels of the receptors it may signal through are upregulated. It has also been demonstrated that IGF2 upregulates steroidogenic enzymes at both the mRNA and protein levels in LNCaP cells, increases intracellular and secreted steroid/androgen levels in LNCaPs to levels sufficient to stimulate the AR, and upregulated de novo steroidogenesis in LNCaPs and VCaPs. As well, inhibition of INSR and insulin-like growth factor 1 receptor (IGF1R), which IGF2 signals through, suggests that induction of steroidogenesis may be occurring predominantly through IGF1R. In summary, this project has illuminated for the first time that insulin is likely to play a large role in cancer progression, through upregulation of the steroidogenesis and lipogenesis pathways at the mRNA and protein levels, and production levels, and demonstrates a novel role for IGF-II in CaP progression through stimulation of steroidogenesis. It has also been demonstrated that metformin and simvastatin drugs may be useful in suppressing the insulin induction of these pathways. This project affirms the pathways by which ADT- induced metabolic syndrome may exacerbate CaP progression and strongly suggests that the monitoring and modulation of the metabolic state of CaP patients could have a strong impact on their therapeutic outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

14.1 Drugs for diabetes 14.1.1 Diabetes mellitus 14.1.2 Physiology of the pancreas 14.1.3 Insulin replacement therapy 14.1.4 Metformin 14.1.5 Acarbose 14.1.6 Sulfonylureas 14.1.7 Glitazones 14.1.8 Glucagon-like peptide-1, exenatide and sitagliptin 14.2 Drugs for obesity 14.2.1 Introduction 14.2.2 Amphetamine 14.2.3 Phentermine 14.2.5 Orlistat