973 resultados para metal-surfaces
Resumo:
A Espectroscopia Raman Intensificada pela Superfície (SERS) é um efeito de intensificação da intensidade Raman de uma molécula adsorvida numa superfície metálica nanoestruturada. Esta característica permite a utilização do SERS na caracterização vibracional de sistemas como junções moleculares (JM) (JM são sistemas constituídos de fios moleculares sintetizados em junções do tipo metal|fiomolecular|metal) e, no entendimento de quais características morfológicas de agregados metálicos mais influenciariam no sinal SERS obtido. Portanto, esta tese apresenta os seguintes objetivos: (a) síntese e caracterização de substratos SERS ativos, nanoesferas (AuNE) e nanobastões (AuNB) de ouro e eletrodo de ouro ativado eletroquimicamente; (b) síntese e caracterização SERS de fios moleculares em JM; (c) estudo do acoplamento plasmônico entre as superfícies metálicas em JM; (d) correlação entre SERS - morfologia de agregados individuais de AuNB. Os fios moleculares estudados foram os da família das oligofeniliminas (OPI) e, no melhor do nosso entendimento, esta foi a primeira vez que fios moleculares desta família foram caracterizados por Raman e SERS. As JM apresentaram um comportamento SERS não esperado. Enquanto para o modo vibracional, v(CS), a intensidade da banda se apresentou constante com o aumento do espaçamento entre as nanoestruturas metálicas (para distâncias de até 5 nm), o modo vibracional, β(CH), teve a intensidade de sua banda aumentada. Este comportamento foi explicado considerando a diferente natureza da interação dos plasmons nas JM, sendo estas interações do tipo, ressonância de plasmon de superfície (LSPR) - dipolo imagem, para ambos os modos. No entanto, para o modo β(CH) existe também uma intensificação extra devido ao aumento da polarizabilidade dos fios moleculares com o aumento do número de unidades. A correlação SERS - morfologia dos agregados de AuNB indicam que, para agregados onde predominam interações ponta a ponta, os espectros SERS apresentavam uma maior intensidade quando comparados com aqueles em que interações lado a lado predominavam. No entanto, este comportamento não foi observado para agregados contendo mais do que cinco nanopartículas onde estes dois tipos de interações ocorrem indicando que deve existir um acoplamento dos plasmons destes dois tipos de interações contribuindo para maiores valores de intensidade SERS.
Resumo:
Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.
Resumo:
The past years have seen a great interest in the use of frequency selective surfaces (FSS), as spatial filters, in many microwave applications. Among these, we highlight applications in telecommunication systems (such as satellite communications and radar), high gain antennas (combined with planar antennas) and (home and industrial) microwave ovens. The FSS is usually composed of two-dimensional periodic arrays, with equally spaced elements, which may be metallic patches (printed on dielectric substrates) or aperture (holes in thin metal surfaces). Using periodic arrays, the FSS have been able to meet the demands of the telecommunications industry. However, new demands are finding technological limitations. In this context, adverse filtering requirements have forced designers to use FSS optimization methods to find specific formats of FSS elements. Another alternative that has been used to increase the selectivity of the FSS is the cascaded FSS, a simple technique that has as main drawback the increased dimensions of the structure, as well as its weight. This work proposes the development of a new class of selective surfaces frequency (FSS) composed of quasi-periodic (or non-periodic) arrangements. The proposed FSS have no array periodicity, in relation with the spatial position of their elements. The frequency responses of these structures were simulated using commercial softwares that implement full-wave methods. For the purpose of validation of this study, FSS prototypes were built and measured, being possible to observe a good agreement between simulated and measured results. The main conclusions of this work are presented, as well as suggestions for future works.
Resumo:
The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.
Resumo:
In this paper we developed a prototype for dynamic and quantitative analysis of the hardness of metal surfaces by penetration tests. It consists of a micro-indenter which is driven by a gear system driven by three-rectified. The sample to be tested is placed on a table that contains a load cell that measures the deformation in the sample during the penetration of micro-indenter. With this prototype it is possible to measure the elastic deformation of the material obtained by calculating the depth of penetration in the sample from the difference of turns between the start of load application to the application of the load test and return the indenter until the complete termination of load application. To determine the hardness was used to measure the depth of plastic deformation. We used 7 types of steel trade to test the apparatus. There was a dispersion of less than 10% for five measurements made on each sample and a good agreement with the values of firmness provided by the manufacturers.
Resumo:
In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.
Resumo:
We have analyzed the relative energy of nonmagnetic and magnetic low-lying electronic states of Ni atoms adsorbed on regular and defective sites of the MgO(001) surface. To this end cluster and periodic surface models are used within density functional theory. For Ni atoms adsorbed on oxygen vacancies at low coverage, the interaction energy between the metal and the support is much larger than on regular sites. Strong bonding results in a diamagnetic adsorbed species and the energy required to reach the high-spin state increases. Moreover, a correlation appears between the low-spin to high-spin energy difference and the interaction energy hypothesizing that it is possible to prepare the surface to tune the high-spin to low-spin energy difference. Magnetic properties of adsorbed thin films obtained upon increasing coverage are more difficult to interpret. This is because the metallic bond is readily formed and dominates over the effect of the atoms directly bound to the vacancy.
Resumo:
Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
It is demonstrated that monodisperse magnetic FePt nanoparticle can be engineered into a protective dense silica layer, followed by concentric outer mesoporous silica layers with tailored -SH, -SO3H and -NH2 surface groups, these new materials can be used to capture heavy metal ions and DNA molecules from solution specifically by their internal or/and external functionalised surfaces by magnetic means.
Resumo:
Growing ivy around buildings has benefits. However, ivy potentially damages buildings which limit its use. Options for preventing ivy attachment were investigated to provide ivy management alternatives. Indoor and outdoor experiments were conducted, where metals (Cu, Zn) and anti-graffiti paints were applied to model wall panels. Metal treatments, in both indoor and outdoor experiments, fully prevented ivy attachment. For Hedera helix, silane-based anti-graffiti paint prevented attachment in the laboratory and required under half the peak detachment force necessary to detach the control in the outdoor experiment. In conclusion, metals and silane-based paint are management possibilities for ivy attachment around buildings.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)