910 resultados para metal matrix composites
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
Dissertação de mestrado em Engenharia de Materiais
Resumo:
The thesis entitled "Sol-Gel Alumina Nano Composites for Functional Applications" investigate sol-gel methods of synthesis of alumina nanocomposites special reference to alumina-aluminium titanate and alumina-lanthanum phosphate composites. The functional properties such as thermal expansion coefficient and thermal shock resistance, machinability of composites as well as thermal protection are highlighted in addition to novel approach in synthesis of composites.A general introduction of alumina matrix composites materials, followed by brief coverage of alumina-aluminium titanate and alumina-lanthanum phosphate composites is highlight of the first chapter. The second chapter deals with the sol-gel synthesis of aluminium titanate and alumina-aluminium titanate composite. The synthesis of machinable substrate, based on alumina and lanthanum phosphate forms the basis of the third chapter. The fourth chapter describes the sol-gel coating of mullite on SiC substrate for the possible gas filtration application.
Resumo:
In the present study, an attempt has been made to prepare composites by incorporating expanded graphite fillers in insulating elastomer matrices and to study its DC electrical conductivity, dielectric properties and electromagnetic shielding characteristics, in addition to evaluating the mechanical properties. Recently, electronic devices and components have been rapidly developing and advancing. Thus, with increased usage of electronic devices, electromagnetic waves generated by electronic systems can potentially create serious problems such as malfunctions of medical apparatus and industry robots and can even cause harm to the human body. Therefore, in this work the applicable utility of the prepared composites as electromagnetic interference (EMI) shielding material are also investigated. The dissertation includes nine chapters
Resumo:
Flexible and thin single layer microwave absorbers based on strontium ferrite–carbon black–nitrile rubber composites have been fabricated employing a specific recipe and their reflection loss characteristics were studied in the S (2–4 GHz) and X-bands (8–12 GHz). The incorporation of carbon black not only reinforces the rubber by improving the mechanical properties of the composite but also modifies the dielectric permittivity of the composite. Strontium ferrite when impregnated into a rubber matrix imparts the required magnetic permeability to the composite. The combination of strontium ferrite and carbon black can then be employed to tune the microwave absorption characteristics of the resulting composite. The complex dielectric permittivity and permeability were measured by employing a cavity perturbation technique. The microwave absorption characteristics of composites were modelled in that an electromagnetic wave incident normally on the metal terminated single layer absorber. The influence of filler volume fraction, frequency, absorber thickness on the bandwidth of absorption are discussed and correlated
Resumo:
Sisal fibers have been chemically modified by reaction with lignins, extracted from sugarcane bagasse and Pinus-type wood and then hydroxymethylated, to increase adhesion in resol-type phenolic thermoset matrices. Inverse gas chromatography (IGC) results showed that acidic sites predominate for unmodified/modified sisal fibers and for phenolic thermoset, indicating that the phenolic matrix has properties that favor the interaction with sisal fibers. The IGC results also showed that the phenolic thermoset has a dispersive component closer to those of the modified fibers suggesting that thermoset interactions with the less polar modified fibers are favored. Surface SEM images of the modified fibers showed that the fiber bundle deaggregation increased after the treatment, making the interfibrillar structure less dense in comparison with that of unmodified fibers, which increased the contact area and encouraged microbial biodegradation in simulated soil. Water diffusion was observed to be faster for composites reinforced with modified fibers, since the phenolic resin penetrated better into modified fibers, thereby blocking water passage through their channels. Overall, composites` properties showed that modified fibers promote a significant reduction in the hydrophilic character, and consequently of the reinforced composite without a major effect on impact strength and with increased storage modulus. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nickel nanoparticles into silica-carbon matrix composites were prepared by using the polymeric precursor method. The effects of the polyester type and the time of pyrolysis on the mesoporosity and nickel particle dispersion into non-aqueous amorphous silica-carbon matrix were investigated by thermogravimetric analysis, adsorption/desorption isotherms and TEM. A well-dispersed metallic phase could be only obtained by using ethylene glycol. Weightier polyesters affected the pyrolysis process due to a combination of more amounts of carbonaceous residues and delaying of pyrolysis process. The post-pyrolyzed composites were successfully cleaned at 200 degrees C for I h in oxygen atmosphere leading to an increase in the surface area and without the occurrence of carbon combustion or nickel nanoparticles oxidation. The matrix composites presented predominantly mesoporous with pore size well defined in 38 angstrom, mainly when tetraethylene glycol was used as polymerizing agent. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Mechanical strength of polyethylene terephthalate (PET) fibres and polymethyl methacrylate (PMMA) matrix composites were studied with particular interest on the effects of oxygen and argon plasma treated fibres. PET. fibres were treated in a radio frequency plasma reactor using argon or oxygen for different treatment times to increase the interface adhesion. Fibre volume fraction was measured through digital image analysis. Elastic moduli resulted between 3 GPa for untreated to 6 GPa for treated composites. Tensile tests on PET fibres showed that plasma treatment caused a decrease in average tensile strength compared to untreated fibres. Fracture analysis confirmed the increase in interfacial adhesion due to plasma treatment. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.