975 resultados para medial frontal cortex
Chronic alcoholism in humans results in alterations in myeline gene expression in the frontal cortex
Resumo:
The density of diffuse, primitive and classic beta/A4 protein deposits was estimated in sulci and gyri in the frontal cortex and parahippocampal gyrus (PHG) in 8 cases of Alzheimer's disease. Total beta/A4 deposit density was similar in the frontal cortex and PHG but the ratio of primitive and classic deposits to the total was greater in the PHG compared with the frontal cortex. Total beta/A4 deposit density was greater in the depths of the sulci, but the proportions of the various beta/A4 subtypes were similar in sulci and gyri. Hence, increased density of primitive and classic deposits in the PHG could reflect enhanced conversion of diffuse to mature deposits whereas increased density of mature beta/A4 subtypes in sulci versus gyri may reflect increased beta/A4 deposition in the sulci.
Resumo:
The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (< 10 microm) blood vessels in four patients. The data suggest that, of the amyloid-beta subtypes, the clusters of classic amyloid-beta deposits appear to be the most closely related to blood vessels and especially to the larger-diameter, vertically penetrating arterioles in the upper cortical laminae.
Resumo:
The clustering pattern of diffuse, primitive and classic β-amyloid (Aβ) deposits was studied in the upper laminae of the frontal cortex of 9 patients with sporadic Alzheimer's disease (AD). Aβ stained tissue was counterstained with collagen type IV antiserum to determine whether the clusters of Aβ deposits were related to blood vessels. In all patients, Aβ deposits and blood vessels were clustered, with in many patients, a regular periodicity of clusters along the cortex parallel to the pia. The classic Aβ deposit clusters coincided with those of the larger blood vessels in all patients and with clusters of smaller blood vessels in 4 patients. Diffuse deposit clusters were related to blood vessels in 3 patients. Primitive deposit clusters were either unrelated to or negatively correlated with the blood vessels in six patients. Hence, Aβ deposit subtypes differ in their relationship to blood vessels. The data suggest a direct and specific role for the larger blood vessels in the formation of amyloid cores in AD. © 1995.
Resumo:
The density of the diffuse, primitive and classic beta-amyloid (Abeta) deposits and the incidence of large and small diameter blood vessels was studied in the upper laminae of the frontal cortex of 10 patients with sporadic Alzheimer’s disease (AD). The data were analysed using the partial correlation coefficient to determine whether variations in the density of Abeta deposit subtypes along the cortex were related to blood vessels. Significant correlations between the density of the diffuse or primitive Abeta deposits and blood vessels were found in only a small number of patients. However, the classic Abeta deposits were positively correlated with the large blood vessels in all 10 patients, the correlations remaining when the effects of gyral location and mutual correlations between Abeta deposits were removed. These results suggest that the larger blood vessels are involved specifically in the formation of the classic Abeta deposits and are less important in the formation of the diffuse and primitive deposits.
Resumo:
The laminar distribution of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in the frontal cortex of patients with Alzheimer’s disease (AD). In most patients, the density of the diffuse and primitive Abeta deposits was greatest in the upper cortical layers and the classic deposits in the deeper cortical layers. The distribution of the larger blood vessels (>10 micron in diameter) was often bimodal with peaks in the upper and deeper cortical layers. The incidence of capillaries (<10 micron) was significantly higher in the deeper cortical layers in most patients. Multiple regression analysis selected vertical distance below the pia mater as the most significant factor correlated with the Abeta deposit density. With the exception of the classic deposits in two patients, there was no evidence that these vertical distributions were related to laminar variations in the incidence of large or small blood vessels.
Resumo:
Type 1 cannabinoid receptors (CB1R) have a well established role in modulating GABAergic signalling with the central nervous system, and are thought to be the only type present at GABAergic presynaptic terminals. In the medial entorhinal cortex (mEC), some cortical layers show high levels of ongoing GABAergic signalling (namely layer II) while others show relatively low levels (layer V). Using whole-cell patch clamp techniques, I have, for the first time, demonstrated the presence of functional CB1R in both deep and superficial layers of the mEC. Furthermore, using a range of highly specific ligands for both CB1R and CB2R, I present strong pharmacological evidence for CB2Rs being present in both deep and superficial layers of the mEC in the adult rat brain. In brain slices taken at earlier points in CNS development (P8-12), I have shown that while both CB1R and CB2R specific ligands do modulate GABAergic signalling at early developmental stages, antagonists/ inverse agonists and full agonists have similar effects, and serve only to reduce GABAergic signalling. These data suggest that the full cannabinoid signalling mechanisms at this early stage in synaptogenesis are not yet in place. During these whole-cell studies, I have developed and refined a novel recording technique, using an amantidine derivative (IEM1460) which allows inhibitory postsynaptic currents to be recorded under conditions in which glutamate receptors are not blocked and network activity remains high. Finally I have shown that bath applied CB1 and CB2 receptor antagonists/ inverse agonists are capable of modulating kainic acid induced persistent oscillatory activity in mEC. Inverse agonists suppressed oscillatory activity in the superficial layers of the mEC while it was enhanced in the deeper layers. It seems likely that cannabinoid receptors modulate the inhibitory neuronal activity that underlies network oscillations.
Resumo:
Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs) at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC) neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500?nM), increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.
Resumo:
The medial pFC (mPFC) is frequently reported to play a central role in Theory of Mind (ToM). However, the contribution of this large cortical region in ToM is not well understood. Combining a novel behavioral task with fMRI, we sought to demonstrate functional divisions between dorsal and rostral mPFC. All conditions of the task required the representation of mental states (beliefs and desires). The level of demands on cognitive control (high vs. low) and the nature of the demands on reasoning (deductive vs. abductive) were varied orthogonally between conditions. Activation in dorsal mPFC was modulated by the need for control, whereas rostral mPFC was modulated by reasoning demands. These findings fit with previously suggested domain-general functions for different parts of mPFC and suggest that these functions are recruited selectively in the service of ToM.
Resumo:
Neuroimaging studies of episodic memory, or memory of events from our personal past, have predominantly focused their attention on medial temporal lobe (MTL). There is growing acknowledgement however, from the cognitive neuroscience of memory literature, that regions outside the MTL can support episodic memory processes. The medial prefrontal cortex is one such region garnering increasing interest from researchers. Using behavioral and functional magnetic resonance imaging measures, over two studies, this thesis provides evidence of a mnemonic role of the medial PFC. In the first study, participants were scanned while judging the extent to which they agreed or disagreed with the sociopolitical views of unfamiliar individuals. Behavioral tests of associative recognition revealed that participants remembered with high confidence viewpoints previously linked with judgments of strong agreement/disagreement. Neurally, the medial PFC mediated the interaction between high-confidence associative recognition memory and beliefs associated with strong agree/disagree judgments. In an effort to generalize this finding to well-established associative information, in the second study, we investigated associative recognition memory for real-world concepts. Object-scene pairs congruent or incongruent with a preexisting schema were presented to participants in a cued-recall paradigm. Behavioral tests of conceptual and perceptual recognition revealed memory enhancements arising from strong resonance between presented pairs and preexisting schemas. Neurally, the medial PFC tracked increases in visual recall of schema-congruent pairs whereas the MTL tracked increases in visual recall of schema-incongruent pairs. Additionally, ventral areas of the medial PFC tracked conceptual components of visual recall specifically for schema-congruent pairs. These findings are consistent with a recent theoretical proposal of medial PFC contributions to memory for schema-related content. Collectively, these studies provide evidence of a role for the medial PFC in associative recognition memory persisting for associative information deployed in our daily social interactions and for those associations formed over multiple learning episodes. Additionally, this set of findings advance our understanding of the cognitive contributions of the medial PFC beyond its canonical role in processes underlying social cognition.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop. Specific alpha absolute power changes were measured in quantitative electroencephalography (qEEG). Our hypothesis is that during the preparation of motoraction (i.e.. 2 s before the ball drops) integration occurs among the left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. We contend that in right-handers, the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy right handed subjects (13 men and 10 women), with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness. The experiment consisted of a task of catching balls with the right hard in free drop. The three-way ANOVA analysis demonstrated all interaction between moment and position in left-medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.05). Summarizing, the experimental task enabled the observation of integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation.
Resumo:
The study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when healthy subjects had to catch balls in free drop; specifically through quantitative electroencephalography (qEEG) alpha absolute power changes. Our hypothesis is that during the preparation of motor action (i.e., 2 s before ball`s drop) occurred integration among left medial frontal, left primary somatomotor and left posterior parietal cortices, showing a differentiated activity involving expectation, planning and preparedness. This hypothesis supports a lateralization of motor function. Although we contend that in right-handers the left hemisphere takes on a dominant role for the regulation of motor behavior. The sample was composed of 23 healthy subjects (13 male and 10 female), right handed, with ages varying between 25 and 40 years old (32.5 +/- 7.5), absence of mental and physical illness, right handed, and do not make use of any psychoactive or psychotropic substance at the time of the study. The experiment consisted of a task of catching balls in free drop. The three-way ANOVA analysis demonstrated an interaction between moment and position in left medial frontal cortex (F3 electrode), somatomotor cortex (C3 electrode) and posterior parietal cortex (P3 electrode: p < 0.001). Summarizing, through experimental task employed, it was possible to observe integration among frontal, central and parietal regions. This integration appears to be more predominant in expectation, planning and motor preparation. In this way, it established an absolute predominance of this mechanism under the left hemisphere. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7) in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13) did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12). The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere) and the affectation (or not) of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. METHODS The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories), Digits span (WISC-R verbal scale) and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74) years from surgery in CE group and at 6.47 (SD = 2.77) in CE+ group. RESULTS The Medulloblastoma group showed severe executive deficit (= 1.5 SD below normal mean) in all assessed tests, the most severe occurring in vermal patients. The Astrocytoma group also showed executive deficits in digits span, semantic fluency (animal category) and moderate to slight deficit in Stroop (word and colour) tests. In the astrocytoma group, the tumor's localization and dentate affectation showed different profile and level of impairment: moderate to slight for vermal and hemispheric patients respectively. The resected volume, age at surgery and the time between surgery-evaluation correlated with some neuropsychological executive variables. CONCLUSION Results suggest a differential prefrontal-like deficit due to cerebellar lesions and/or cerebellar-frontal diaschisis, as indicate the results in astrocytoma group (without treatments), that also can be generated and/or increased by treatments in the medulloblastoma group. The need for differential rehabilitation strategies for specific clinical groups is remarked. The results are also discussed in the context of the Cerebellar Cognitive Affective Syndrome.