956 resultados para mechanical and thermal-cycling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinyl butyral) - MMT clay nanocomposites were synthesized in situ with three different degrees of acetalization and with varying clay content for each vinyl butyral polymer ratio. The clay nano-platelet galleries were expanded, as determined by X-ray diffraction and TEM analysis. The glass transition temperature of the polymer nanocomposites were found to be similar to 56 degrees C and similar to 52 degrees C for the neat polymer and the 4% clay loaded samples, respectively. The 4 wt% clay loaded film showed higher strength and low strain to failure. The dynamic mechanical analysis also confirmed the improved stability of the matrix. The matrix with 0.5 butyral to alcohol ratio for 4 wt% clay exhibited good water vapor transmission compared to all other compositions. The encapsulated devices with 2.5 and 4 wt% clay loaded films increases the device life time and the efficiencies of these films were 50% higher than their encapsulated pristine polymer films. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance polyimide fibers possess man), excellent properties, e.g., outstanding thermal stability and mechanical properties and excellent radiation resistant and electrical properties. However, the preparation of fibers with good mechanical properties is very difficult. In this report, a biphenvl polyimide from 3,3',4,4'-biphenyltetracarboxylic dianhydride and 4,4'-oxydianiline is synthesized in p-chlorophenol by one-step polymerization. The solution is spun into a coagulation bath of water and alcohol via dry-jet wet-spinning technology. Then, the fibers are drawn in two heating tubes. Thermal gravimetric analysis, thermal mechanical analysis, and dynamic mechanical analysis (DMA) are performed to study the properties of the fibers. The results show that the fibers have a good thermal stability at a temperature of more than 400degreesC. The linear coefficient of thermal expansion is negative in the solid state and the glass transition temperature is about 265degreesC. DMA spectra indicate that the tandelta of the fibers has three transition peaks, namely, alpha, beta, and gamma transition. The alpha and gamma transition temperature, corresponding to the end-group motion and glass transition, respectively, extensively depends on the applied frequency, while the beta transition does not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

:ofiedian lethal temperatures ( LT50' s ) were determined for rainbow trout, Salmo gairdnerii, acclimated for a minimum of 21 days at 5 c onstant temperatures between 4 and 20 0 C. and 2 diel temperature fluctuations ( sinewave curves of amplitudes ± 4 and ± 7 0 C. about a mean temperature of 12 0 C. ) . Twenty-four-, 48-, and 96-hour LT50 estimates were c alculated f ollowing standard flow-through aquatic bioassay techniques and probi t transformation of mortality data. The phenomenon of delayed thermal mortality was also investigated. Shifts in upper incipient lethal temperature occurred as a result of previous thermal conditioning. It was shown that increases in constant acclimation temperature result in proportional l inear increases in thermal tolerances. The increase i n estimated 96-hour LT50's was approximately 0.13 0 c. X 1 0 C:1 between 8 and 20 0 C. The effect of acclimation to both cyclic temperature regimes was an increase in LT50 to values between the mean and maximum constant equivalent daily temperatures of the cycles. Twenty-four-, 48-, and 96-hour LT50 estimates of both cycles corresponded approximately to the LT50 values of the 16 0 C. c onstant temperature equivalent . This increase i n thermal tolerance was further demonstrated by the delayed thermal mortality experiments . Cycle amplitudes appeared to i nfluence thermal resistance through alterations in initi al mortality since mortality patterns characteristic of base temperature acclimations re-appeared after approximately 68 hours exposure to test temperatures for the 12 + 4 0 C. group, whereas mortality patterns stabilized and remained constant for a period greater than 192 hours with the larger therma l cycle ( 12 + 7 0 C. ). NO s ignificant corre lations between s pecimen weight and time-to-death was apparent. Data are discussed in relation to the establishment of thermal criteria for important commercial and sport fishes , such as the salmonids , as is the question whether previously reported values on lethal temperature s may have been under estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, an attempt has been made to prepare composites by incorporating expanded graphite fillers in insulating elastomer matrices and to study its DC electrical conductivity, dielectric properties and electromagnetic shielding characteristics, in addition to evaluating the mechanical properties. Recently, electronic devices and components have been rapidly developing and advancing. Thus, with increased usage of electronic devices, electromagnetic waves generated by electronic systems can potentially create serious problems such as malfunctions of medical apparatus and industry robots and can even cause harm to the human body. Therefore, in this work the applicable utility of the prepared composites as electromagnetic interference (EMI) shielding material are also investigated. The dissertation includes nine chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to study the color, opacity, crystallinity, and the thermal and mechanical properties of films based on blends of gelatin and five different types of PVA [poly(vinyl alcohol)], with and without a plasticizer. The effect of the degree of hydrolysis of the PVA and the glycerol concentration on these properties was studied using colorimetry, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile mechanical tests. All films were essentially colorless (Delta E* < 5) and with low opacity ( Y <= 2.1). The DSC results were typical of partially crystalline materials, showing some phase separation characterized by a glass transition (T(g) = 40-55 degrees C), related to the amorphous part of the material, followed by two endothermic peaks related to the melting (T(m) = 100-160 and 170-210 degrees C) of the crystallites. The XRD results confirmed the crystallinity of the films. The film produced with PVA Celvol((R)) 418 (DH = 91.8%) showed the highest tensile resistance (tensile strength = 38 MPa), for films without plasticizer. However, with glycerol, the above-mentioned PVA and the PVA Celvol((R)) 504 produced the least resistant films of all the PVA types. But, although the mechanical properties of the blended films depended on the type of PVA used, there was no direct relationship between these properties and the degree of hydrolysis of the PVA. The properties studied were more closely dependent on the glycerol concentration. Finally, the mechanical resistance of the films presented a linear relationship with the glass transition temperature of the films. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to analyze mechanical, physical and thermal performance of roofing tiles produced with several formulations of cement-based matrices reinforced with sisal and eucalyptus fibers. The physical properties of the tiles were more influenced by the fiber content of the composite than by the type of reinforcement. The type of the fiber was the main variable for the achievement of the best results of mechanical properties. Exposure to tropical climate has caused a severe reduction in the mechanical properties of the composites. After approximately four months of age under external weathering the toughness of the vegetable fiber-cement fell to 53-68% of the initial toughness at 28 days of age. The thermal performance showed that roofing tiles reinforced with vegetable fiber are acceptable as substitutes of asbestos-cement sheets. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes with cylindrical and bamboo-type structures are produced in a graphite sample after mechanical milling at ambient temperature and subsequent thermal annealing up to 1400 °C. The ball milling produces a precursor structure and the thermal annealing activates the nanotube growth. Different nanotubular structures indicate different formation mechanisms: multi-wall cylindrical carbon nanotubes are probably formed upon micropores and the bamboo tubes are produced because of the metal catalysts. A two-dimensional growth governed by surface diffusion is believed to be one important factor for the nanotube growth. A potential industrial production method is demonstrated with advantages of large production quantity and low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To measure cutaneous electrical nociceptive thresholds in relation to known thermal and mechanical stimulation for nociceptive threshold detection in cats.Study design Prospective, blinded, randomized cross-over study with 1-week washout interval.Animals Eight adult cats [bodyweight 5.1 +/- 1.8 kg (mean + SD)].Methods Mechanical nociceptive thresholds were tested using a step-wise manual inflation of a modified blood pressure bladder attached to the cat's thoracic limb. Thermal nociceptive thresholds were measured by increasing the temperature of a probe placed on the thorax. The electrical nociceptive threshold was tested using an escalating current from a constant current generator passed between electrodes placed on the thoracic region. A positive response (threshold) was recorded when cats displayed any or all of the following behaviors: leg shake, head turn, avoidance, or vocalization. Four baseline readings were performed before intramuscular injection of meperidine (5 mg kg(-1)) or an equal volume of saline. Threshold recordings with each modality were made at 15, 30, 45, 60, 90, and 120 minutes post-injection. Data were analyzed using ANOVA and paired t-tests (significance at p < 0.05).Results There were no significant changes in thermal, mechanical, or electrical thresholds after saline. Thermal thresholds increased at 15-60 minutes (p < 0.01) and mechanical threshold increased at 30 and 45 minutes after meperidine (p < 0.05). Maximum thermal threshold was +4.1 +/- 0.3 degrees C above baseline at 15 minutes while maximum mechanical threshold was 296 +/- 265 mmHg above baseline at 30 minutes after meperidine. Electrical thresholds following meperidine were not significantly different than baseline (p > 0.05). Thermal and electrical thresholds after meperidine were significantly higher than saline at 30 and 45 minutes (p < 0.05), and at 120 minutes (p < 0.05), respectively. Mechanical thresholds were significantly higher than saline treatment at 30 minutes (p <= 0.05).Conclusion and clinical relevance Electrical stimulation did not detect meperidine analgesia whereas both thermal and mechanical thresholds changed after meperidine administration in cats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives:Microleakage is a pre-stage of debonding between hard chairside relines and denture base acrylic resins. Therefore, it is important to assess them with regard to the longevity of the relined denture. This study investigated the effect of thermal cycling on the microleakage at the interface of three hard chairside reline resins and three denture base resins.Material and methods:Rectangular bars (12 mm x 3 mm x 3 mm) of Lucitone 550, Acron MC and QC 20 were made and relined with Kooliner, Tokuyama Rebase Fast II and Ufi Gel Hard, Lucitone 550, Acron MC and QC 20 resins. Specimens were divided into one control and two test groups (n = 10). In specimens of the control group, the microleakage was performed after the reline procedure. In Test Group 1, the specimens were stored for 24 h in distilled water at room temperature and in Test Group 2; the specimens were thermal cycled from 5 to 55 degrees C for 5000 cycles with a 30-s dwell time. Subsequently, all specimens were immersed in 50% silver nitrate solutions for 24 h. All specimens were sectioned longitudinally into three fractions and the lateral sections were examined (n = 20). Silver nitrate stain penetration was examined under a stereoscopic lens with x30 magnification, and the images were captured. Leica Qwin image analysis software was used to determine microleakage at the interface of the materials. Data were analysed using the Kruskal-Wallis test at a 95% level of significance.Results:For all cycles, there were no statistically significant differences between thermal cycled and non-thermal cycled groups (p > 0.05).Conclusion:It can be concluded that thermal cycling had no effect on the microleakage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.