897 resultados para mean square error


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In uplink orthogonal frequency division multiple access (OFDMA) systems, multiuser interference (MUI) occurs due to different carrier frequency offsets (CFO) of different users at the receiver. In this paper, we present a minimum mean square error (MMSE) based approach to MUI cancellation in uplink OFDMA. We derive a recursion to approach the MMSE solution. We present a structure-wise and performance-wise comparison of this recursive MMSE solution with a linear PIC receiver as well as other detectors recently proposed in the literature. We show that the proposed recursive MMSE solution encompasses several known detectors in the literature as special cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In positron emission tomography (PET), image reconstruction is a demanding problem. Since, PET image reconstruction is an ill-posed inverse problem, new methodologies need to be developed. Although previous studies show that incorporation of spatial and median priors improves the image quality, the image artifacts such as over-smoothing and streaking are evident in the reconstructed image. In this work, we use a simple, yet powerful technique to tackle the PET image reconstruction problem. Proposed technique is based on the integration of Bayesian approach with that of finite impulse response (FIR) filter. A FIR filter is designed whose coefficients are determined based on the surface diffusion model. The resulting reconstructed image is iteratively filtered and fed back to obtain the new estimate. Experiments are performed on a simulated PET system. The results show that the proposed approach is better than recently proposed MRP algorithm in terms of image quality and normalized mean square error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energiataseen mallinnus on osa KarjaKompassi-hankkeeseen liittyvää kehitystyötä. Tutkielman tavoitteena oli kehittää lypsylehmän energiatasetta etukäteen ennustavia ja tuotoskauden aikana saatavia tietoja hyödyntäviä matemaattisia malleja. Selittävinä muuttujina olivat dieetti-, rehu-, maitotuotos-, koelypsy-, elopaino- ja kuntoluokkatiedot. Tutkimuksen aineisto kerättiin 12 Suomessa tehdyistä 8 – 28 laktaatioviikon pituisesta ruokintakokeesta, jotka alkoivat heti poikimisen jälkeen. Mukana olleista 344 lypsylehmästä yksi neljäsosa oli friisiläis- ja loput ayshire-rotuisia. Vanhempien lehmien päätiedosto sisälsi 2647 havaintoa (koe * lehmä * laktaatioviikko) ja ensikoiden 1070. Aineisto käsiteltiin SAS-ohjelmiston Mixed-proseduuria käyttäen ja poikkeavat havainnot poistettiin Tukeyn menetelmällä. Korrelaatioanalyysillä tarkasteltiin energiataseen ja selittävien muuttujien välisiä yhteyksiä. Energiatase mallinnettiin regressioanalyysillä. Laktaatiopäivän vaikutusta energiataseeseen selitettiin viiden eri funktion avulla. Satunnaisena tekijänä mallissa oli lehmä kokeen sisällä. Mallin sopivuutta aineistoon tarkasteltiin jäännösvirheen, selitysasteen ja Bayesin informaatiokriteerin avulla. Parhaat mallit testattiin riippumattomassa aineistossa. Laktaatiopäivän vaikutusta energiataseeseen selitti hyvin Ali-Schaefferin funktio, jota käytettiin perusmallina. Kaikissa energiatasemalleissa vaihtelu kasvoi laktaatioviikosta 12. alkaen, kun havaintojen määrä väheni ja energiatase muuttui positiiviseksi. Ennen poikimista käytettävissä olevista muuttujista dieetin väkirehuosuus ja väkirehun syönti-indeksi paransivat selitysastetta ja pienensivät jäännösvirhettä. Ruokinnan onnistumista voidaan seurata maitotuotoksen, maidon rasvapitoisuuden ja rasva-valkuaissuhteen tai EKM:n sisältävillä malleilla. EKM:n vakiointi pienensi mallin jäännösvirhettä. Elopaino ja kuntoluokka olivat heikkoja selittäjiä. Malleja voidaan hyödyntää karjatason ruokinnan suunnittelussa ja seurannassa, mutta yksittäisen lehmän energiataseen ennustamiseen ne eivät sovellu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new feature-based technique is introduced to solve the nonlinear forward problem (FP) of the electrical capacitance tomography with the target application of monitoring the metal fill profile in the lost foam casting process. The new technique is based on combining a linear solution to the FP and a correction factor (CF). The CF is estimated using an artificial neural network (ANN) trained using key features extracted from the metal distribution. The CF adjusts the linear solution of the FP to account for the nonlinear effects caused by the shielding effects of the metal. This approach shows promising results and avoids the curse of dimensionality through the use of features and not the actual metal distribution to train the ANN. The ANN is trained using nine features extracted from the metal distributions as input. The expected sensors readings are generated using ANSYS software. The performance of the ANN for the training and testing data was satisfactory, with an average root-mean-square error equal to 2.2%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (sigma'(v0)), soil type, shear wave velocity (V-s) and earthquake parameters such as peak horizontal acceleration (a(max)) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are sigma'(v0), soil type. V-s, a(max) and M. In the other model based on shear wave velocity alone uses V-s, a(max) and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider robust joint linear precoder/receive filter design for multiuser multi-input multi-output (MIMO) downlink that minimizes the sum mean square error (SMSE) in the presence of imperfect channel state information (CSI). The base station is equipped with multiple transmit antennas, and each user terminal is equipped with multiple receive antennas. The CSI is assumed to be perturbed by estimation error. The proposed transceiver design is based on jointly minimizing a modified function of the MSE, taking into account the statistics of the estimation error under a total transmit power constraint. An alternating optimization algorithm, wherein the optimization is performed with respect to the transmit precoder and the receive filter in an alternating fashion, is proposed. The robustness of the proposed algorithm to imperfections in CSI is illustrated through simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for lossless as well as lossy compression of monochrome images using Boolean minimization is proposed. The image is split into bit planes. Each bit plane is divided into windows or blocks of variable size. Each block is transformed into a Boolean switching function in cubical form, treating the pixel values as output of the function. Compression is performed by minimizing these switching functions using ESPRESSO, a cube based two level function minimizer. The minimized cubes are encoded using a code set which satisfies the prefix property. Our technique of lossless compression involves linear prediction as a preprocessing step and has compression ratio comparable to that of JPEG lossless compression technique. Our lossy compression technique involves reducing the number of bit planes as a preprocessing step which incurs minimal loss in the information of the image. The bit planes that remain after preprocessing are compressed using our lossless compression technique based on Boolean minimization. Qualitatively one cannot visually distinguish between the original image and the lossy image and the value of mean square error is kept low. For mean square error value close to that of JPEG lossy compression technique, our method gives better compression ratio. The compression scheme is relatively slower while the decompression time is comparable to that of JPEG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a robust design of MIMO-relay precoder and receive filter for the destination nodes in a non-regenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a single MIMO-relay node. The source and destination nodes are single antenna nodes, whereas the MIMO-relay node has multiple transmit and multiple receive antennas. The channel state information (CSI) available at the MIMO-relay node for precoding purpose is assumed to be imperfect. We assume that the norms of errors in CSI are upper-bounded, and the MIMO-relay node knows these bounds. We consider the robust design of the MIMO-relay precoder and receive filter based on the minimization of the total MIMO-relay transmit power with constraints on the mean square error (MSE) at the destination nodes. We show that this design problem can be solved by solving an alternating sequence of minimization and worst-case analysis problems. The minimization problem is formulated as a convex optimization problem that can be solved efficiently using interior-point methods. The worst-case analysis problem can be solved analytically using an approximation for the MSEs at the destination nodes. We demonstrate the robust performance of the proposed design through simulations.