991 resultados para mathematical reasoning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present an analysis of the inductive reasoning of twelve secondary students in a mathematical problem-solving context. Students were proposed to justify what is the result of adding two even numbers. Starting from the theoretical framework, which is based on Pólya’s stages of inductive reasoning, and our empirical work, we created a category system that allowed us to make a qualitative data analysis. We show in this paper some of the results obtained in a previous study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, researchers in artificial intelligence have become interested in replicating human physical reasoning talents in computers. One of the most important skills in this area is predicting how physical systems will behave. This thesis discusses an implemented program that generates algebraic descriptions of how systems of rigid bodies evolve over time. Discussion about the design of this program identifies a physical reasoning paradigm and knowledge representation approach based on mathematical model construction and algebraic reasoning. This paradigm offers several advantages over methods that have become popular in the field, and seems promising for reasoning about a wide variety of classical mechanics problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed and oral language) and numerical factors that include single-digit processing efficiency and multi-digit skills such as number system knowledge and estimation. This study of third graders (N = 258) finds both domain-general and numerical factors contribute independently to explaining variation in three significant arithmetic skills: basic calculation fluency, written multi-digit computation, and arithmetic word problems. Estimation accuracy and number system knowledge show the strongest associations with every skill and their contributions are both independent of each other and other factors. Different domain-general factors independently account for variation in each skill. Numeral comparison, a single digit processing skill, uniquely accounts for variation in basic calculation. Subsamples of children with MLD (at or below 10th percentile, n = 29) are compared with low achievement (LA, 11th to 25th percentiles, n = 42) and typical achievement (above 25th percentile, n = 187). Examination of these and subsets with persistent difficulties supports a multiple deficits view of number difficulties: most children with number difficulties exhibit deficits in both domain-general and numerical factors. The only factor deficit common to all persistent MLD children is in multi-digit skills. These findings indicate that many factors matter but multi-digit skills matter most in third grade mathematical achievement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The famous Herbrand's theorem of mathematical logic plays an important role in automated theorem proving. In the first part of this article, we recall the theorem and formulate a number of natural decision problems related to it. Somewhat surprisingly, these problems happen to be equivalent. One of these problems is the so-called simultaneous rigid E-unification problem. In the second part, we survey recent result on the simultaneous rigid E-unification problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sound and complete first-order goal-oriented sequent-type calculus is developed with ``large-block'' inference rules. In particular, the calculus contains formal analogues of such natural proof-search techniques as handling definitions and applying auxiliary propositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of a research programme Evidence Algorithm is a development of an open system of automated proving that is able to accumulate mathematical knowledge and to prove theorems in a context of a self-contained mathematical text. By now, the first version of such a system called a System for Automated Deduction, SAD, is implemented in software. The system SAD possesses the following main features: mathematical texts are formalized using a specific formal language that is close to a natural language of mathematical publications; a proof search is based on special sequent-type calculi formalizing natural reasoning style, such as application of definitions and auxiliary propositions. These calculi also admit a separation of equality handling from deduction that gives an opportunity to integrate logical reasoning with symbolic calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between normative patterns of social interaction and children's mathematical thinking was investigated in 5 classes (4 reform and 1 conventional) of 7- to 8-year-olds. In earlier studies, lessons from these classes had been analyzed for the nature of interaction broadly defined; the results indicated the existence of 4 types of classroom cultures (conventional textbook, conventional problem solving, strategy reporting, and inquiry/argument). In the current study, 42 lessons from this data resource were analyzed for children's mathematical thinking as verbalized in class discussions and for interaction patterns. These analyses were then combined to explore the relationship between interaction types and  expressed mathematical thinking. The results suggest that increased complexity in children's expressed mathematical thinking was closely related to the types of interaction patterns that differentiated class discussions among the 4 classroom cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a model for space in which an autonomous agent acquires information about its environment. The agent uses a predefined exploration strategy to build a map allowing it to navigate and deduce relationships between points in space. The shapes of objects in the environment are represented qualitatively. This shape information is deduced from the agent's motion. Normally, in a qualitative model, directional information degrades under transitive deduction. By reasoning about the shape of the environment, the agent can match visual events to points on the objects. This strengthens the model by allowing further relationships to be deduced. In particular, points that are separated by long distances, or complex surfaces, can be related by line-of-sight. These relationships are deduced without incorporating any metric information into the model. Examples are given to demonstrate the use of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel approach to building a Fuzzy Inference System (FIS) that preserves the monotonicity property is proposed. A new fuzzy re-labeling technique to re-label the consequents of fuzzy rules in the database (before the Similarity Reasoning process) and a monotonicity index for use in FIS modeling are introduced. The proposed approach is able to overcome several restrictions in our previous work that uses mathematical conditions in building monotonicity-preserving FIS models. Here, we show that the proposed approach is applicable to different FIS models, which include the zero-order Sugeno FIS and Mamdani models. Besides, the proposed approach can be extended to undertake problems related to the local monotonicity property of FIS models. A number of examples to demonstrate the usefulness of the proposed approach are presented. The results indicate the usefulness of the proposed approach in constructing monotonicity-preserving FIS models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognised that successful mathematical learning comprises much more than just knowledge of skills and procedures. For example, Skemp (1976) identified the advantages of teaching mathematics for what he referred to as “relational” rather than “Instrumental” understanding. More recently, Kilpatrick, Swafford and Findell (2001) proposed five “intertwining strands” of mathematical proficiency, namely Conceptual Understanding, Procedural Fluency, Strategic Competence, Adaptive Reasoning, and Productive Disposition. In Australia, the new Australian Curriculum: Mathematics (F–10), which will be implemented from 2013, has adapted and adopted the first four of these proficiency strands to emphasise the breadth of mathematical capabilities that students need to acquire through their study of the various content strands. This paper addresses the question of what types of classroom practice can provide opportunities for the development of these capabilities in elementary schools. It draws on data from a number of projects, as well as the literature, to provide illustrative examples. Finally, the paper argues that developing the full set of capabilities requires complex changes in teachers’ pedagogy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent international study of pre-service teachers identified that proportional reasoning was problematic for pre-service teachers. Proportional reasoning is an important topic in the middle years of schooling and therefore it is critical that teachers understand this topic and can rely on their Mathematical Content Knowledge (MCK) when teaching. The focus of this paper is second-year Australian primary pre-service teachers’ MCK of real number items related to ratio, rate, proportion and proportional reasoning. This paper reports on strengths and weakness of pre-service teachers’ MCK when responding to test items; including a method suitable for analysing responses to five items and ranked by three levels of difficulty. The results revealed insights into their correct methods of solutions and common incorrect responses, identifying difficulty, where multiplication and division were required. The method of coding test items by difficulty ranking may assist with developing an appropriate learning trajectory, which will assist pre-service teachers develop their MCK of this and other difficult topics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reasoning in mathematics plays a critical role in developing mathematical understandings. In this article, Bragg, Loong, Widjaja, Vale and Herbert explore an adaptation of the Magic V Task and how was used in several classrooms to promote and develop reasoning skills.