987 resultados para mass-wind coupling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. Foehn winds of southern California.
An investigation of the hot, dry and dust laden winds occurring in the late fall and early winter in the Los Angeles Basin and attributed in the past to the influences of the desert regions to the north revealed that these currents were of a foehn nature. Their properties were found to be entirely due to dynamical heating produced in the descent from the high level areas in the interior to the lower Los Angeles Basin. Any dust associated with the phenomenon was found to be acquired from the Los Angeles area rather than transported from the desert. It was found that the frequency of occurrence of a mild type foehn of this nature during this season was sufficient to warrant its classification as a winter monsoon. This results from the topography of the Los Angeles region which allows an easy entrance to the air from the interior by virtue of the low level mountain passes north of the area. This monsoon provides the mild winter climate of southern California since temperatures associated with the foehn currents are far higher than those experienced when maritime air from the adjacent Pacific Ocean occupies the region.

II. Foehn wind cyclo-genesis.
Intense anticyclones frequently build up over the high level regions of the Great Basin and Columbia Plateau which lie between the Sierra Nevada and Cascade Mountains to the west and the Rocky Mountains to the east. The outflow from these anticyclones produce extensive foehns east of the Rockies in the comparatively low level areas of the middle west and the Canadian provinces of Alberta and Saskatchewan. Normally at this season of the year very cold polar continental air masses are present over this territory and with the occurrence of these foehns marked discontinuity surfaces arise between the warm foehn current, which is obliged to slide over a colder mass, and the Pc air to the east. Cyclones are easily produced from this phenomenon and take the form of unstable waves which propagate along the discontinuity surface between the two dissimilar masses. A continual series of such cyclones was found to occur as long as the Great Basin anticyclone is maintained with undiminished intensity.

III. Weather conditions associated with the Akron disaster.
This situation illustrates the speedy development and propagation of young disturbances in the eastern United States during the spring of the year under the influence of the conditionally unstable tropical maritime air masses which characterise the region. It also furnishes an excellent example of the superiority of air mass and frontal methods of weather prediction for aircraft operation over the older methods based upon pressure distribution.

IV. The Los Angeles storm of December 30, 1933 to January 1, 1934.
This discussion points out some of the fundamental interactions occurring between air masses of the North Pacific Ocean in connection with Pacific Coast storms and the value of topographic and aerological considerations in predicting them. Estimates of rainfall intensity and duration from analyses of this type may be made and would prove very valuable in the Los Angeles area in connection with flood control problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.

Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.

It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."

Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small low air-speed wind turbine blade case study is used to demonstrate the effectiveness of a materials and design selection methodology described by Monroy Aceves et al. (2008) [24] for composite structures. The blade structure comprises a shell of uniform thickness and a unidirectional reinforcement. The shell outer geometry is fixed by aerodynamic considerations. A wide range of lay-ups are considered for the shell and reinforcement. Structural analysis is undertaken using the finite element method. Results are incorporated into a database for analysis using material selection software. A graphical selection stage is used to identify the lightest blade meeting appropriate design constraints. The proposed solution satisfies the design requirements and improves on the prototype benchmark by reducing the mass by almost 50%. The flexibility of the selection software in allowing identification of trends in the results and modifications to the selection criteria is demonstrated. Introducing a safety factor of two on the material failure stresses increases the mass by only 11%. The case study demonstrates that the proposed design methodology is useful in preliminary design where a very wide range of cases should be considered using relatively simple analysis. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diffuse interface phase field model is proposed for the unified analysis of diffusive and displacive phase transitions under nonisothermal conditions. Two order parameters are used for the description of the phenomena: one is related to the solute mass fraction and the other to the strain. The model governing equations come from the balance of linear momentum, the solute mass balance (which will lead to the Cahn-Hilliard equation) and the balance of internal energy. Thermodynamic restrictions allow to define constitutive relations for the thermodynamic forces and for the mechanical and chemical dissipations. Numerical tests carried out at different values of the initial temperature show that the model is able to describe the main features of both the displacive and the diffusive phase transitions, as well as their effect on the temperature. © 2010, Advanced Engineering Solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of wind turbine blades is a true multi-objective engineering task. The aerodynamic effectiveness of the turbine needs to be balanced with the system loads introduced by the rotor. Moreover the problem is not dependent on a single geometric property, but besides other parameters on a combination of aerofoil family and various blade functions. The aim of this paper is therefore to present a tool which can help designers to get a deeper insight into the complexity of the design space and to find a blade design which is likely to have a low cost of energy. For the research we use a Computational Blade Optimisation and Load Deflation Tool (CoBOLDT) to investigate the three extreme point designs obtained from a multi-objective optimisation of turbine thrust, annual energy production as well as mass for a horizontal axis wind turbine blade. The optimisation algorithm utilised is based on Multi-Objective Tabu Search which constitutes the core of CoBOLDT. The methodology is capable to parametrise the spanning aerofoils with two-dimensional Free Form Deformation and blade functions with two tangentially connected cubic splines. After geometry generation we use a panel code to create aerofoil polars and a stationary Blade Element Momentum code to evaluate turbine performance. Finally, the obtained loads are fed into a structural layout module to estimate the mass and stiffness of the current blade by means of a fully stressed design. For the presented test case we chose post optimisation analysis with parallel coordinates to reveal geometrical features of the extreme point designs and to select a compromise design from the Pareto set. The research revealed that a blade with a feasible laminate layout can be obtained, that can increase the energy capture and lower steady state systems loads. The reduced aerofoil camber and an increased L/. D-ratio could be identified as the main drivers. This statement could not be made with other tools of the research community before. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three major odorous compounds are 2-methylisoborneol ( 2-MIB), geosmin and beta-cyclocitral, which in water were determined by coupling headspace solid-phase microextraction ( HS-SPME) with gas chromatography-mass spectrometry (GC-MS). The operating conditions of HS-SPME, such as fibre type, salt concentration, water temperature, stirring, absorption time and desorption time were studied and discussed.The highest absorption of the odorous compounds were obtained under the following operating conditions as the addition of 30% ( m/V) NaCl, stirring at 60 degrees C for 40 min, using 65 mu m polydimethyl siloxane/divinylbenzene coated fibre. After the odorous compounds had been absorbed in the fibre under the optimal conditions of HSSPME, they were desorbed at 250 degrees C and determined by GC-MS. The limits of detection for geosmin, beta-cyclocitral and 2-MIB in water were 1. 0, 1. 3, 1. 7 ng/L, and the relative standard deviations for them were 4. 9%, 8. 4%, 6. 2%,respectively. There were good linear correlation (the calibration coefficients were all above 0. 997) for the three odorous compounds in the range of 5 similar to 1000 ng/ L. Therefore, trace levels of the odorous compounds at ng/L in water could be quantified by the simple method with satisfactory result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The center-of-mass motion of a quasi-two-dimensional exciton with spin-orbit coupling (SOC) in the presence of a perpendicular electric field is calculated by perturbation theory. The results indicate that a quasi-two-dimensional exciton with SOC can exhibit the spin Hall effect (SHE), which is similar to two-dimensional electrons and holes. A likely way to establish exciton SHE in experiments and a possible phase transition from dark to bright state driven by SOC are suggested. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the Rashba spin-orbit coupling brought by transverse electric field in InSb nanowires. In small k(z) (k(z) is the wave vector along the wire direction) range, the Rashba spin-orbit splitting energy has a linear relationship with k(z), so we can define a Rashba coefficient similarly to the quantum well case. We deduce some empirical formulas of the spin-orbit splitting energy and Rashba coefficient, and compare them with the effective-mass calculating results. It is interesting to find that the Rashba spin-orbit splitting energy decreases as k(z) increases when k(z) is large due to the k(z)-quadratic term in the band energy. The Rashba coefficient increases with increasing electric field, and shows a saturating trend when the electric field is large. As the radius increases, the Rashba coefficient increases at first, then decreases. The effects of magnetic fields along different directions are discussed. The case where the magnetic field is along the wire direction or the electric field direction are similar. The spin state in an energy band changes smoothly as k(z) changes. The case where the magnetic field is perpendicular to the wire direction and the electric field direction is quite different from the above two cases, the k(z)-positive and negative parts of the energy bands are not symmetrical, and the energy bands with different spins cross at a k(z)-nonzero point, where the spin splitting energy and the effective g factor are zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron cyclotron-resonance (CR) mass of quasi-two-dimensional electrons in GaN/AlxGa1-xN heterostructures is studied theoretically. The correction to the CR mass due to electron-phonon interaction is investigated, taking into account band nonparabolicity, the occupation effect, and the screening of the electron-phonon coupling. The dependence of the CR mass on the electron density and on the magnetic field strength is displayed in detail, and the calculated CR mass agrees well with a recent experiment. We found that the effective electron-phonon coupling strength in GaN heterostructures is reduced below the bulk value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.