992 resultados para marine isotopic records
Resumo:
Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment-water interface at 2-19 m below the seafloor (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2- to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ~17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperatures of the recovered core ranged from 2 to -1.8°C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S hydrate during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (delta34S, +27.4?) were released. The delta13C values of the CH4 in the gas hydrate, -64.5 to -67.5? (PDB), together with deltaD values of -197 to -199? (SMOW) indicate a primarily microbial source for the CH4. The delta18O value of the hydrate H2O is +2.9? (SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S hydrate is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here down to the BSR depth (19-68 mbsf) the gas hydrate inferred to exist is a >=99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4-H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, tectonically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone.
Resumo:
Registros isotópicos de oxigênio obtidos em alta resolução das estalagmites CL2 e MAG das cavernas Calixto e Marota, região da Chapada Diamantina (CD) (12ºS), Estado da Bahia, sul do Nordeste brasileiro (sNEB), permitiram reconstituir as mudanças passadas da precipitação entre 165-128 e 59-39 mil anos A.P. Para a reconstituição paleoclimática considerou-se resultados de um estudo de calibração realizado em duas cavernas da CD o qual demonstrou uma relação entre composição isotópica da água meteórica e de gotejamento e sugeriu um ambiente adequado para a deposição do espeleotema em condições equilíbrio e/ou próximas com a água de gotejamento. A interpretação da paleoprecipitação através dos registros isotópicos \'\'delta\' POT.18\'O das estalagmites também foi baseada na relação entre composição isotópica da água da precipitação e a quantidade de chuva obtidos em estações da IAEA-GNIP no Brasil e de simulações das variações do \'\'delta\' POT.18\'O da chuva através do modelo climático ECHAM-4. Esses dados indicaram o efeito quantidade (amount effect) como fator preponderante de controle isotópico da água da chuva que formam os espeleotemas na CD, significando que a diminuição dos valores de \'\'delta\' POT.18\'O está associada ao aumento do volume de chuvas e vice-versa. Os registros de \'\'delta\' POT.18\'O dos espeleotemas permitiram reconstituir a variação da paleoprecipitação na escala orbital e milenar durante o penúltimo glacial bem como correlacionar mudanças na paleoprecipitação no sNEB com eventos milenares registrados na Groelândia no último glacial. Os registros da CD indicaram um aumento (diminuição) da paleoprecipitação na Bahia relacionado a diminuição (aumento) da insolação austral de verão a 10ºS durante o penúltimo glacial, similar ao observado no último ciclo precessional. Na escala orbital os registros da CD estiveram em antifase com os paleoindicadores isotópicos do Sudeste brasileiro e em fase com os valores de\'\'delta\' POT.18\'O dos espeleotemas do leste da China. Esse padrão de precipitação é similar ao observado na última glaciação e sugere que a variação na insolação de verão afetou as monções sul-americanas (MSA) promovendo mudanças na precipitação no sNEB no penúltimo glacial. Condições áridas no sNEB durante o aumento da insolação de verão estariam provavelmente associadas ao aprofundamento da subsidência de ar provocado pelo fortalecimento da circulação leste-oeste da MSA devido ao aumento das atividades convectivas na Amazônia o que teria, favorecido um posicionamento mais a sul da Zona de Convergência do Atlântico Sul (ZCAS). O oposto também ocorreria durante as fases de baixa insolação de verão quando a MSA estaria provavelmente mais desintensificada. Durante o penúltimo glacial (Terminação Glacial II) abruptas oscilações nos registros da CD para valores mais baixos de \'\'delta\' POT.18\'O indicaram um profundo aumento da precipitação coincidente com o evento Heinrich (H11). Nesse período a paleoprecipitação no sNEB esteve correlacionada negativamente com as mudanças climáticas na China e no oeste amazônico (Peru) e positivamente com o Sudeste brasileiro. Interpretou-se que as anomalias positivas da precipitação no sNEB podem ter estado relacionadas ao deslocamento para sul da Zona de Convergência Intertropical (ZCIT) bem como com a intensificação da MSA e ZCAS nesse período. Finalmente, oscilações isotópicas abruptas para valores mais altos observadas durante o estágio marinho isotópico 3 coincidentes com os eventos quentes registrados na Groelândia, denominados de eventos Dansgaard-Oeschger (DO), foram interpretados como a ocorrência de eventos muito secos no sNEB. Essas variações da precipitação na escala milenar, que estão em fase com os registros no Peru, podem ter estado relacionadas ao deslocamento para norte da ZCIT o que teria promovido uma profunda desintensificação da MSA.
Resumo:
Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using δ¹⁸Oatm, δO₂⁄N₂ and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of δO₂∕N₂ and δ¹⁸Oatm data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340–800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of δO₂∕N₂ and δ¹⁸Oatm records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific δO₂∕N₂ variations. Such an observation, the evidence of a 100 ka periodicity in the δO₂∕N₂ signal and the difficulty to identify extrema and mid-slopes in δO2∕N2 increase the uncertainty associated with the use of δO₂∕N₂ as an orbital tuning tool, now calculated to be 3–4 ka. When combining records of δ¹⁸Oatm and δO₂∕N₂ from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720–800 ka). Our data set reveals a time-varying offset between δO₂∕N₂ and δ¹⁸Oatm records over the last 800 ka that we interpret as variations in the lagged response of δ¹⁸Oatm to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of δ¹⁸Oatm to precession.
Resumo:
Two cores, Site 1089 (ODP Leg 177) and PS2821-1, recovered from the same location (40°56'S; 9°54'E) at the Subtropical Front (STF) in the Atlantic Sector of the Southern Ocean, provide a high-resolution climatic record, with an average temporal resolution of less than 600 yr. A multi-proxy approach was used to produce an age model for Core PS2821-1, and to correlate the two cores. Both cores document the last climatic cycle, from Marine Isotopic Stage 6 (MIS 6, ca. 160 kyr BP, ka) to present. Summer sea-surface temperatures (SSSTs) have been estimated, with a standard error of ca. +/-1.16°C, for the down core record by using Q-mode factor analysis (Imbrie and Kipp method). The paleotemperatures show a 7°C warming at Termination II (last interglacial, transition from MIS 6 to MIS 5). This transition from glacial to interglacial paleotemperatures (with maximum temperatures ca. 3°C warmer than present at the core location) occurs earlier than the corresponding shift in delta18O values for benthic foraminifera from the same core; this suggests a lead of Southern Ocean paleotemperature changes compared to the global ice-volume changes, as indicated by the benthic isotopic record. The climatic evolution of the record continues with a progressive temperature deterioration towards MIS 2. High-frequency, millennial-scale climatic instability has been documented for MIS 3 and part of MIS 4, with sudden temperature variations of almost the same magnitude as those observed at the transitions between glacial and interglacial times. These changes occur during the same time interval as the Dansgaard-Oeschger cycles recognized in the delta18Oice record of the GRIP and GISP ice cores from Greenland, and seem to be connected to rapid changes in the STF position in relation to the core location. Sudden cooling episodes ('Younger Dryas (YD)-type' and 'Antarctic Cold Reversal (ACR)-type' of events) have been recognized for both Termination I (ACR-I and YD-I events) and II (ACR-II and YD-II events), and imply that our core is located in an optimal position in order to record events triggered by phenomena occurring in both hemispheres. Spectral analysis of our SSST record displays strong analogies, particularly for high, sub-orbital frequencies, to equivalent records from Vostok (Antarctica) and from the Subtropical North Atlantic ocean. This implies that the climatic variability of widely separated areas (the Antarctic continent, the Subtropical North Atlantic, and the Subantarctic South Atlantic) can be strongly coupled and co-varying at millennial time scales (a few to 10-ka periods), and eventually induced by the same triggering mechanisms. Climatic variability has also been documented for supposedly warm and stable interglacial intervals (MIS 1 and 5), with several cold events which can be correlated to other Southern Ocean and North Atlantic sediment records.