955 resultados para mangrove fine root decomposition rates
Resumo:
Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.
Resumo:
We examined the effects of soil mesofauna and the litter decomposition environment (above and belowground) on leaf decomposition rates in three forest types in southeastern Brazil. To estimate decomposition experimentally, we used litterbags with a standard substrate in a full-factorial experimental design. We used model selection to compare three decomposition models and also to infer the importance of forest type, decomposition environment, mesofauna, and their interactions on the decomposition process. Rather than the frequently used simple and double-exponential models, the best model to describe our dataset was the exponential deceleration model, which assumed a single organic compartment with an exponential decrease of the decomposition rate. Decomposition was higher in the wet than in the seasonal forest, and the differences between forest types were stronger aboveground. Regarding litter decomposition environment, decomposition was predominantly higher below than aboveground, but the magnitude of this effect was higher in the seasonal than in wet forests. Mesofauna exclusion treatments had slower decomposition, except aboveground into the Semi-deciduous Forest, where the mesofauna presence did not affect decomposition. Furthermore, the effect of mesofauna was stronger in the wet forests and belowground. Overall, our results suggest that, in a regional scale, both decomposers activity and the positive effect of soil mesofauna in decomposition are constrained by abiotic factors, such as moisture conditions.
Resumo:
Global climate change might significantly impact future ecosystems. The purpose of this thesis was to investigate potential changes in woody plant fine root respiration in response to a changing climate. In a sugar maple dominated northern hardwood forest, the soil was experimentally warmed (+4 °C) to determine if the tree roots could metabolically acclimate to warmer soil conditions. After one and a half years of soil warming, there was an indication of slight acclimation in the fine roots of sugar maple, helping the ecosystem avoid excessive C loss to the atmosphere. In a poor fen northern peatland in northern Michigan, the impacts of water level changes on woody plant fine root respiration were investigated. In areas of increased and also decreased water levels, there were increases in the CO2 efflux from ecosystem fine root respiration. These studies show the importance of investigating further the impacts climate change may have on C balance in northern ecosystems.
Resumo:
Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.
Resumo:
Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.
Resumo:
Debido a la complejidad de los procesos que controlan el intercambio de gases de carbono (C) y nitrógeno (N) entre el suelo y la atmósfera, en los sistemas forestales y agroforestales, son comprensibles las incógnitas existentes respecto a la estimación de los flujos de los gases de efecto invernadero (GEI) y la capacidad como reservorios de carbono de los suelos, bajo diferentes formas de uso y regímenes de alteración a escala regional y global. Esta escasez de información justifica la necesidad de caracterizar la dinámica de intercambio de GEI en los ecosistemas Mediterráneos, en especial en el contexto actual de cambio climático, y el incremento asociado de temperatura y periodos de sequía, alteración de los patrones de precipitación, y el riesgo de incendios forestales; cuyas consecuencias afectarán tanto a los compartimentos de C y de N del suelo como a la capacidad de secuestro de C de estos ecosistemas. Dentro de este contexto se enmarca la presente tesis doctoral cuyo objetivo ha sido cuantificar y caracterizar los flujos de dióxido de carbono (CO2), de oxido nitroso (N2O) y de metano (CH4), junto con los stocks de C y N, en suelos forestales de Quercus ilex, Quercus pyrenaica y Pinus sylvestris afectados por incendios forestales; así como el estudiar el efecto de la gestión y la cubierta arbórea en la respiración del suelo y los stocks de C y N en una dehesa situada en el centro de la Península Ibérica. De manera que los flujos de CO2, N2O y CH4; y los parámetros físico-químicos y biológicos del suelo fueron estudiados en los diferentes tratamientos y ecosistemas a lo largo del trabajo que se presenta. Los resultados obtenidos muestran la existencia de variaciones temporales y espaciales de la respiración del suelo dentro de una escala geográfica pequeña, controladas principalmente por la temperatura y la humedad del suelo; y por los contenidos de C y N del suelo en un bosque de Pinus sylvestris en la vertiente norte de la Sierra de Guadarrama , en España. El análisis de los efectos de los incendios forestales a largo plazo (6-8 años) revela que las pérdidas anuales de C a través de la respiración del suelo en las zonas quemadas de Quercus ilex, Quercus pyrenaica y Pinus sylvestris fueron 450 gCm-2yr-1, 790 gCm-2yr-1 y 1220 gCm-2yr-1, respectivamente; lo que representa una reducción del 43%, 22% y 11% en comparación con las zonas no quemadas de dichas especies, debido a la destrucción de la masa arbórea. El efecto del fuego también alteró los flujos N2O y CH4 del suelo, de una forma diferente en los distintos ecosistemas y estacionalidades estudiadas. De tal modo, que los suelos quemados mostraron una mayor oxidación del CH4 en las masas de Q. ilex, y una menor oxidación en las de P. sylvestris; además de una disminución de los flujos de N2O en Q. pyrenaica. Los incendios también afectaron los parámetros microclimáticos de los suelos forestales, observándose un incremento de la temperatura del suelo y una disminución de la humedad en los emplazamientos quemados que en los no quemados. Los cationes intercambiables, el pH, el cociente C/N, el contenido en raicillas y la biomasa microbiana también disminuyeron en las zonas quemadas. Aunque el C orgánico del suelo no se alteró de manera significativa, si lo hizo la calidad de la materia orgánica, disminuyendo el carbono lábil y aumentando las formas recalcitrantes lo que se tradujo en menor sensibilidad de la respiración del suelo a la temperatura (valores de Q10) en las zonas quemadas. Los resultados del estudio realizado en la Dehesa muestran que las actividades silvopastorales estudiadas afectaron levemente y de forma no constante a la respiración del suelo y las condiciones microclimáticas del suelo. Se observó una reducción 12% de la respiración del suelo por efecto del pastoreo no intensivo. Sin embargo, se observaron incrementos de 3Mg/ha en los stocks de C y de 0.3 Mg/ha en los stocks de N en los suelos pastoreados en comparación con los no pastoreados. Aunque, no se observó un claro efecto de la labranza sobre la respiración del suelo en nuestro experimento, sin embargo si se observó una disminución de 3.5 Mg/ha en las reservas de C y de 0.3 Mg/ ha en las de N en los suelos labrados comparados con los no labrados. La copa del arbolado influyó de forma positiva tanto en la respiración del suelo, como en los stocks de C y N de los suelos. La humedad del suelo jugó un papel relevante en la sensibilidad de la respiración a la temperatura del suelo. Nuestros resultados ponen de manifiesto la sensibilidad de la respiración del suelo a cambios en la humedad y los parámetros edáficos, y sugieren que la aplicación de modelos estándar para estimar la respiración del suelo en áreas geográficas pequeñas puede no ser adecuada a menos que otros factores sean considerados en combinación con la temperatura del suelo. Además, las diferentes respuestas de los flujos de gases de efecto invernadero a los cambios, años después de la ocurrencia de incendios forestales, destaca la necesidad de incluir estos cambios en las futuras investigaciones de la dinámica del carbono en los ecosistemas mediterráneos. Por otra parte, las respuestas divergentes en los valores de respiración del suelo y en los contenidos de C y N del suelo observados en la dehesa, además de la contribución de la copa de los árboles en los nutrientes del suelo ilustran la importancia de mantener la gestión tradicional aplicada en beneficio de la capacidad de almacenar C en la dehesa estudiada. La información obtenida en este trabajo pretende contribuir a la mejora del conocimiento de la dinámica y el balance de C en los sistemas mediterráneos, además de ayudar a predecir el impacto del cambio climático en el intercambio de C entre los ecosistemas forestales y agroforestales y la atmósfera. ABSTRACT Due to the complexity of the processes that control the exchange of carbon (C) and nitrogen (N) gasses between soils and the atmosphere in forest and agroforestry ecosystems, understandable uncertainties exist as regards the estimation of greenhouse gas (GHG) fluxes and the soil sink capacity at regional and global scale under different forms of land use and disturbance regimes. These uncertainties justify the need to characterize the exchange dynamics of GHG between the atmosphere and soils in Mediterranean terrestrial ecosystems, particularly in the current context of climate change and the associated increase in temperature, drought periods, heavy rainfall events, and increased risk of wildfires, which affect not only the C and N pools but also the soil C sink capacity of these ecosystems. Within this context, the aims of the present thesis were, firstly, to quantify and characterize the fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) as well as the C and N stocks in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands affected by wildfires, and secondly, to study the effects of Quercus ilex canopy and management on both soil respiration and C and N pools in dehesa systems in the center of Iberian Peninsula. Soil CO2, N2O and CH4 fluxes, and soil physical-chemical and biological parameters were studied under the different treatments and ecosystems considered in this study. The results showed seasonal and spatial variations in soil respiration within small geographic areas, mainly controlled by soil temperature and moisture in addition to soil carbon and nitrogen stocks in mixed pine–oak forest ecosystems on the north facing slopes of the Sierra de Guadarrama in Spain. The analysis of long term effects of wildfires (6–8 years) revealed that annual carbon losses through soil respiration from burned sites in Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands were 450 gCm-2yr-1, 790 gCm-2yr-1 and 1220 gCm-2yr-1, respectively; with burned sites emitting 43%, 22% and 11% less in burned as opposed to non-burned sites due the loss of trees. Fire may alter both N2O and CH4 fluxes although the magnitude of such variation depends on the site, soil characteristics and seasonal climatic conditions. The burned sites showed higher CH4 oxidation in Q.ilex stands, and lower oxidation rates in P. sylvestris stands. A reduction in N2O fluxes in Q. pyrenaica stands was detected at burned sites along with changes in soil microclimate; higher soil temperature and lower soil moisture content. Exchangeable cations, the C/N ratio, pH, fine root and microbial biomass were also found to decrease at burned sites. Although the soil organic carbon was not significantly altered, the quality of the organic matter changed, displaying a decrease in labile carbon and a relative increase in refractory forms, leading to lower sensitivity of soil respiration to temperature (Q10 values) at burned sites. The results from the dehesa study show that light grazing and superficial tilling practices used in the studied dehesa system in Spain had a slight but non-consistent impact on soil respiration and soil microclimate over the study period. The reduction in soil respiration in the dehesa system due to the effects of grazing was around 12 %. However, increments of 3Mg/ha in C stocks and 0.3 Mg/ha in N stocks in grazed soils were observed. Although no clear effect of tilling on soil respiration was found, a decrease of 3.5 Mg/ha in C stocks and 0.3 Mg/ha in N stocks was detected for tilled soils. The presence of a tree canopy induced increases in soil respiration, soil C and N stocks, while soil moisture was found to play an important role in soil respiration temperature response. Our results suggest that the use of standard models to estimate soil respiration in small geographical areas may not be adequate unless other factors are considered in addition to soil temperature. Furthermore, the different responses of GHG flux to climatic shifts, many years after the occurrence of wildfire, highlight the need to include these shifts in C dynamics in future research undertaken in Mediterranean ecosystems. Furthermore, divergent responses in soil respiration and soil C and N stocks to grazing or tilling practices in Dehesa systems, and the influence of tree canopy on soil respiration and soil nutrient content, illustrate the importance of maintaining beneficial management practices. Moreover, the carbon sequestration capacity of the Dehesa system studied may be enhanced through improvements in the management applied. It is hoped that the information obtained through this research will contribute towards improving our understanding of the dynamics and balance of C in Mediterranean systems, and help predict the impact of climate change on the exchange of C between forest and agroforestry ecosystems and the atmosphere.
Resumo:
Los estudios sobre la asignación del carbono en los ecosistemas forestales proporcionan información esencial para la comprensión de las diferencias espaciales y temporales en el ciclo del carbono de tal forma que pueden aportar información a los modelos y, así predecir las posibles respuestas de los bosques a los cambios en el clima. Dentro de este contexto, los bosques Amazónicos desempeñan un papel particularmente importante en el balance global del carbono; no obstante, existen grandes incertidumbres en cuanto a los controles abióticos en las tasas de la producción primaria neta (PPN), la asignación de los productos de la fotosíntesis a los diferentes componentes o compartimentos del ecosistema (aéreo y subterráneo) y, cómo estos componentes de la asignación del carbono responden a eventos climáticos extremos. El objetivo general de esta tesis es analizar los componentes de la asignación del carbono en bosques tropicales maduros sobre suelos contrastantes, que crecen bajo condiciones climáticas similares en dos sitios ubicados en la Amazonia noroccidental (Colombia): el Parque Natural Nacional Amacayacu y la Estación Biológica Zafire. Con este objetivo, realicé mediciones de los componentes de la asignación del carbono (biomasa, productividad primaria neta, y su fraccionamiento) a nivel ecosistémico y de la dinámica forestal (tasas anuales de mortalidad y reclutamiento), a lo largo de ocho años (20042012) en seis parcelas permanentes de 1 hectárea establecidas en cinco tipos de bosques sobre suelos diferentes (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa). Toda esta información me permitió abordar preguntas específicas que detallo a continuación. En el Capítulo 2 evalúe la hipótesis de que a medida que aumenta la fertilidad del suelo disminuye la cantidad del carbono asignado a la producción subterránea (raíces finas con diámetro <2 mm). Y para esto, realicé mediciones de la masa y la producción de raíces finas usando dos métodos: (1) el de los cilindros de crecimiento y, (2) el de los cilindros de extracción secuencial. El monitoreo se realizó durante 2.2 años en los bosques con suelos más contrastantes: arcilla y arena-francosa. Encontré diferencias significativas en la masa de raíces finas y su producción entre los bosques y, también con respecto a la profundidad del suelo (010 y 1020 cm). El bosque sobre arena-francosa asignó más carbono a las raíces finas que el bosque sobre arcillas. La producción de raíces finas en el bosque sobre arena-francosa fue dos veces más alta (media ± error estándar = 2.98 ± 0.36 y 3.33 ± 0.69 Mg C ha1 año1, con el método 1 y 2, respectivamente), que para el bosque sobre arcillas, el suelo más fértil (1.51 ± 0.14, método 1, y desde 1.03 ± 0.31 a 1.36 ± 0.23 Mg C ha1 año1, método 2). Del mismo modo, el promedio de la masa de raíces finas fue tres veces mayor en el bosque sobre arena-francosa (5.47 ± 0.17 Mg C ha1) que en el suelo más fértil (de 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). La masa de las raíces finas también mostró un patrón temporal relacionado con la lluvia, mostrando que la producción de raíces finas disminuyó sustancialmente en el período seco del año 2005. Estos resultados sugieren que los recursos del suelo pueden desempeñar un papel importante en los patrones de la asignación del carbono entre los componentes aéreo y subterráneo de los bosques tropicales; y que el suelo no sólo influye en las diferencias en la masa de raíces finas y su producción, sino que también, en conjunto con la lluvia, sobre la estacionalidad de la producción. En el Capítulo 3 estimé y analicé los tres componentes de la asignación del carbono a nivel del ecosistema: la biomasa, la productividad primaria neta PPN, y su fraccionamiento, en los mismos bosques del Capítulo 2 (el bosque sobre arcillas y el bosque sobre arena-francosa). Encontré diferencias significativas en los patrones de la asignación del carbono entre los bosques; el bosque sobre arcillas presentó una mayor biomasa total y aérea, así como una PPN, que el bosque sobre arena-francosa. Sin embargo, la diferencia entre los dos bosques en términos de la productividad primaria neta total fue menor en comparación con las diferencias entre la biomasa total de los bosques, como consecuencia de las diferentes estrategias en la asignación del carbono a los componentes aéreo y subterráneo del bosque. La proporción o fracción de la PPN asignada a la nueva producción de follaje fue relativamente similar entre los dos bosques. Nuestros resultados de los incrementos de la biomasa aérea sugieren una posible compensación entre la asignación del carbono al crecimiento de las raíces finas versus el de la madera, a diferencia de la compensación comúnmente asumida entre la parte aérea y la subterránea en general. A pesar de estas diferencias entre los bosques en términos de los componentes de la asignación del carbono, el índice de área foliar fue relativamente similar entre ellos, lo que sugiere que el índice de área foliar es más un indicador de la PPN total que de la asignación de carbono entre componentes. En el Capítulo 4 evalué la variación espacial y temporal de los componentes de la asignación del carbono y la dinámica forestal de cinco tipos e bosques amazónicos y sus respuestas a fluctuaciones en la precipitación, lo cual es completamente relevante en el ciclo global del carbono y los procesos biogeoquímicos en general. Estas variaciones son así mismo importantes para evaluar los efectos de la sequía o eventos extremos sobre la dinámica natural de los bosques amazónicos. Evalué la variación interanual y la estacionalidad de los componentes de la asignación del carbono y la dinámica forestal durante el periodo 2004−2012, en cinco bosques maduros sobre diferentes suelos (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa), todos bajo el mismo régimen local de precipitación en la Amazonia noroccidental (Colombia). Quería examinar sí estos bosques responden de forma similar a las fluctuaciones en la precipitación, tal y como pronostican muchos modelos. Consideré las siguientes preguntas: (i) ¿Existe una correlación entre los componentes de la asignación del carbono y la dinámica forestal con la precipitación? (ii) ¿Existe correlación entre los bosques? (iii) ¿Es el índice de área foliar (LAI) un indicador de las variaciones en la producción aérea o es un reflejo de los cambios en los patrones de la asignación del carbono entre bosques?. En general, la correlación entre los componentes aéreo y subterráneo de la asignación del carbono con la precipitación sugiere que los suelos juegan un papel importante en las diferencias espaciales y temporales de las respuestas de estos bosques a las variaciones en la precipitación. Por un lado, la mayoría de los bosques mostraron que los componentes aéreos de la asignación del carbono son susceptibles a las fluctuaciones en la precipitación; sin embargo, el bosque sobre arena-francosa solamente presentó correlación con la lluvia con el componente subterráneo (raíces finas). Por otra parte, a pesar de que el noroeste Amazónico es considerado sin una estación seca propiamente (definida como <100 mm meses −1), la hojarasca y la masa de raíces finas mostraron una alta variabilidad y estacionalidad, especialmente marcada durante la sequía del 2005. Además, los bosques del grupo de suelos francos mostraron que la hojarasca responde a retrasos en la precipitación, al igual que la masa de raíces finas del bosque sobre arena-francosa. En cuanto a la dinámica forestal, sólo la tasa de mortalidad del bosque sobre arena-francosa estuvo correlacionada con la precipitación (ρ = 0.77, P <0.1). La variabilidad interanual en los incrementos en el tallo y la biomasa de los individuos resalta la importancia de la mortalidad en la variación de los incrementos en la biomasa aérea. Sin embargo, las tasas de mortalidad y las proporciones de individuos muertos por categoría de muerte (en pie, caído de raíz, partido y desaparecido), no mostraron tendencias claras relacionadas con la sequía. Curiosamente, la hojarasca, el incremento en la biomasa aérea y las tasas de reclutamiento mostraron una alta correlación entre los bosques, en particular dentro del grupo de los bosques con suelos francos. Sin embargo, el índice de área foliar estimado para los bosques con suelos más contrastantes (arcilla y arena-francosa), no presentó correlación significativa con la lluvia; no obstante, estuvo muy correlacionado entre bosques; índice de área foliar no reflejó las diferencias en la asignación de los componentes del carbono, y su respuesta a la precipitación en estos bosques. Por último, los bosques estudiados muestran que el noroeste amazónico es susceptible a fenómenos climáticos, contrario a lo propuesto anteriormente debido a la ausencia de una estación seca propiamente dicha. ABSTRACT Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components; and how the carbon allocation components of Amazon forests respond to extreme climate events. The overall objective of this thesis is to examine the carbon allocation components in old-growth tropical forests on contrasting soils, and under similar climatic conditions in two sites at the Amacayacu National Natural Park and the Zafire Biological Station, located in the north-western Amazon (Colombia). Measurements of above- and below-ground carbon allocation components (biomass, net primary production, and its partitioning) at the ecosystem level, and dynamics of tree mortality and recruitment were done along eight years (20042012) in six 1-ha plots established in five Amazon forest types on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand) to address specific questions detailed in the next paragraphs. In Chapter 2, I evaluated the hypothesis that as soil fertility increases the amount of carbon allocated to below-ground production (fine-roots) should decrease. To address this hypothesis the standing crop mass and production of fine-roots (<2 mm) were estimated by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in the most contrasting forests: the clay-soil forest and the loamy-sand forest. We found that the standing crop fine-root mass and its production were significantly different between forests and also between soil depths (0–10 and 10–20 cm). The loamysand forest allocated more carbon to fine-roots than the clay-soil forest, with fine-root production in the loamy-sand forest twice (mean ± standard error = 2.98 ± 0.36 and 3.33 ± 0.69 Mg C ha −1 yr −1, method 1 and 2, respectively) as much as for the more fertile claysoil forest (1.51 ± 0.14, method 1, and from 1.03 ± 0.31 to 1.36 ± 0.23 Mg C ha −1 yr −1, method 2). Similarly, the average of standing crop fine-root mass was three times higher in the loamy-sand forest (5.47 ± 0.17 Mg C ha1) than in the more fertile soil (from 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). The standing crop fine-root mass also showed a temporal pattern related to rainfall, with the production of fine-roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation of below-ground components, not only driven the differences in the biomass and its production, but also in the time when it is produced. In Chapter 3, I assessed the three components of stand-level carbon allocation (biomass, NPP, and its partitioning) for the same forests evaluated in Chapter 2 (clay-soil forest and loamy-sand forest). We found differences in carbon allocation patterns between these two forests, showing that the forest on clay-soil had a higher aboveground and total biomass as well as a higher above-ground NPP than the loamy-sand forest. However, differences between the two types of forests in terms of stand-level NPP were smaller, as a consequence of different strategies in the carbon allocation of above- and below-ground components. The proportional allocation of NPP to new foliage production was relatively similar between the two forests. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus wood growth (as it has been reported by other authors), as opposed to the most commonly assumed trade-off between total above- and below-ground production. Despite these differences among forests in terms of carbon allocation components, the leaf area index showed differences between forests like total NPP, suggesting that the leaf area index is more indicative of total NPP than carbon allocation. In Chapter 4, I evaluated the spatial and temporal variation of carbon allocation components and forest dynamics of Amazon forests as well as their responses to climatic fluctuations. I evaluated the intra- and inter-annual variation of carbon allocation components and forest dynamics during the period 2004−2012 in five forests on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand), but growing under the same local precipitation regime in north-western Amazonia (Colombia). We were interested in examining if these forests respond similarly to rainfall fluctuations as many models predict, considering the following questions: (i) Is there a correlation in carbon allocation components and forest dynamics with precipitation? (ii) Is there a correlation among forests? (iii) Are temporal responses in leaf area index (LAI) indicative of variations of above-ground production or a reflection of changes in carbon allocation patterns among forests?. Overall, the correlation of above- and below-ground carbon allocation components with rainfall suggests that soils play an important role in the spatial and temporal differences of responses of these forests to rainfall fluctuations. On the one hand, most forests showed that the above-ground components are susceptible to rainfall fluctuations; however, there was a forest on loamy-sand that only showed a correlation with the below-ground component (fine-roots). On the other hand, despite the fact that north-western Amazonia is considered without a conspicuous dry season (defined as <100 mm month−1), litterfall and fine-root mass showed high seasonality and variability, particularly marked during the drought of 2005. Additionally, forests of the loam-soil group showed that litterfall respond to time-lags in rainfall as well as and the fine-root mass of the loamy-sand forest. With regard to forest dynamics, only the mortality rate of the loamy-sand forest was significantly correlated with rainfall (77%). The observed inter-annual variability of stem and biomass increments of individuals highlighted the importance of the mortality in the above-ground biomass increment. However, mortality rates and death type proportion did not show clear trends related to droughts. Interestingly, litterfall, above-ground biomass increment and recruitment rates of forests showed high correlation among forests, particularly within the loam-soil forests group. Nonetheless, LAI measured in the most contrasting forests (clay-soil and loamysand) was poorly correlated with rainfall but highly correlated between forests; LAI did not reflect the differences in the carbon allocation components, and their response to rainfall on these forests. Finally, the forests studied highlight that north-western Amazon forests are also susceptible to climate fluctuations, contrary to what has been proposed previously due to their lack of a pronounced dry season.
Resumo:
Polyethylene glycol (PEG), which is often used to impose low water potentials (ψw) in solution culture, decreases O2 movement by increasing solution viscosity. We investigated whether this property causes O2 deficiency that affects the elongation or metabolism of maize (Zea mays L.) primary roots. Seedlings grown in vigorously aerated PEG solutions at ambient solution O2 partial pressure (pO2) had decreased steady-state root elongation rates, increased root-tip alanine concentrations, and decreased root-tip proline concentrations relative to seedlings grown in PEG solutions of above-ambient pO2 (alanine and proline accumulation are responses to hypoxia and low ψw, respectively). Measurements of root pO2 were made using an O2 microsensor to ensure that increased solution pO2 did not increase root pO2 above physiological levels. In oxygenated PEG solutions that gave maximal root elongation rates, root pO2 was similar to or less than (depending on depth in the tissue) pO2 of roots growing in vermiculite at the same ψw. Even without PEG, high solution pO2 was necessary to raise root pO2 to the levels found in vermiculite-grown roots. Vermiculite was used for comparison because it has large air spaces that allow free movement of O2 to the root surface. The results show that supplemental oxygenation is required to avoid hypoxia in PEG solutions. Also, the data suggest that the O2 demand of the root elongation zone may be greater at low relative to high ψw, compounding the effect of PEG on O2 supply. Under O2-sufficient conditions root elongation was substantially less sensitive to the low ψw imposed by PEG than that imposed by dry vermiculite.
Resumo:
Los análisis de sensibilidad son una herramienta importante para comprender el funcionamiento de los modelos ecológicos, así como para identificar los parámetros más importantes en su funcionamiento. Además, los análisis de sensibilidad pueden utilizarse para diseñar de forma más efectiva planes de muestreo de campo dirigidos a calibrar los modelos ecológicos. En los estudios de ecosistemas forestales, el análisis cuantitativo de la parte subterránea es mucho más costoso y complicado que el estudio de la parte aérea, en especial el estudio de la dinámica de producción y descomposición de raíces gruesas y finas de los árboles. En este trabajo se muestra un ejemplo de análisis de sensibilidad del modelo forestal FORECAST a parámetros que definen la biomasa, longevidad y concentración de nitrógeno en las raíces de los árboles. El modelo se calibró para simular dos rodales de pino silvestre (Pinus sylvestris) en los Pirineos de Navarra. Los resultados indican que la tasa de renovación de raíces finas es el parámetro más influyente en las estimaciones del modelo de crecimiento de los árboles, seguida de la concentración de N en las mismas, siendo la relación biomasa subterránea/total el parámetro al cual el modelo es menos sensible. Además, el modelo es más sensible a los parámetros que definen el componente subterráneo de la biomasa arbórea cuando simula un sitio de menor capacidad productiva y mayor limitación por nutrientes.
Resumo:
We lack a thorough conceptual and functional understanding of fine roots. Studies that have focused on estimating the quantity of fine roots provide evidence that they dominate overall plant root length. We need a standard procedure to quantify root length/biomass that takes proper account of fine roots. Here we investigated the extent to which root length/biomass may be underestimated using conventional methodology, and examined the technical reasons that could explain such underestimation. Our discussion is based on original X-ray-based measurements and on a literature review spanning more than six decades. We present evidence that root-length recovery depends strongly on the observation scale/spatial resolution at which measurements are carried out; and that observation scales/resolutions adequate for fine root detection have an adverse impact on the processing times required to obtain precise estimates. We conclude that fine roots are the major component of root systems of most (if not all) annual and perennial plants. Hence plant root systems could be much longer, and probably include more biomass, than is widely accepted.
Resumo:
The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.
Resumo:
In the Everglades, the majority of fish detrital inputs occur during the dry scason, when waterlevel drawdown reduces aquatic habitat. While these mortality events are highly seasonal, the remineralization and recycling of fish detrital nutrients may represent an important stimulus to the ecosystem in the following wet season. The goal of this study was to quantify the rate of detrital fish decomposition during three periods of the year to determine seasonal variations in decomposition patterns in this ecosystem. A multiple regression analysis showed that hydroperiod and water depth both played a role in determining fish decomposition rates within this ecosystem. Decomposition rates ranged from a low of 13% day−1 in December 2000 to a high of 50% day−1 in April 2001, the height of the dry season. Phosphorus analysis showed that Gambusia holbrooki, the dominant small fish species in the Everglades, contains 7.169±1.46 mg P g−1 wet fish weight. Based on the observed decomposition rates and the average biomass added, the estimafed daily flux of phosphorus from the experimental detrital loading ranged from a low of 27.04 mg P day−1 to a high of 108.14 mg P day−1 during the decomposition period. We estimated that these inputs could represent an input of 43 μg P m−2 day−1 to the total temporal Everglades phosphorus budget. Although much of this phosphorus is likely incorporated into the macroinvertebrate pool, detrital inputs peak during the dry season when nutrients are most likely to be incorporated into the soil and occur when decomposition of vegetative material is moisture-limited. These inputs may therefore play an important role in stimulating vegetative production during the early wet season.
Resumo:
The competitive influence of the root system of the exotic grass Urochloa brizantha and the widespread forb Leonotis nepetifolia on the emergence, survival and early growth of the seedlings of eight tropical heliophilous herbaceous species, six early-successional woody species and five late-successional woody species from Brazil, grown in 3500-cm3 pots and in greenhouse without light restriction were assessed. The density of fine-root systems produced by the forb and the grass in pots were 6.8 cm cm-3 soil and 48.1 cm cm-3 soil, respectively. Seedlings survival of the heliophilous herbaceous, early- and late-successional woody species were 86%, 70% and 100% in presence of the forb root system and 12%, 14% and 100% in competition with grass root system, respectively. The competitive pressure applied by the grass root system on seedling growth of the heliophilous herbaceous, early- and late-successional woody species were 2.4, 1.9 and 1.4 times greater than the forb root system. Total root length of the heliophilous herbaceous, early- and late-successional woody species grown without competitors were 13, 33 and 5 times greater than in competition with forb, and were 66, 54 and 6 times greater than in competition with grass root system, respectively. The averages of fine-root diameter of plants grown without competitors were 209 microm for the heliophilous herbaceous, 281 microm for early-successional trees and 382 microm for late-successional trees. The root system of the forb did not avoid seedling establishment of most plant species, but the grass root system hampered more the establishment of heliophilous herbaceous and early-successional woody species than the seedling establishment of late-successional woody species. The different density of root systems produced in soil by the forb and the grass, and the distinct root traits (e.g. root diameter and root tissue density) of the early- and late-successional plant species can explain the differences in the establishment of seedlings of plant species belonging to different groups of tropical succession when exposed to below-ground competition.
Resumo:
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.