924 resultados para malaria falciparum
Resumo:
Malaria remains globally the most important parasitic disease of man. Data on its deleterious effects during pregnancy have been extensively documented in hyperendemic, holoendemic, and mesoendemic areas from Africa and Asia where Plasmodium falciparum is responsible for almost all infections. However, knowledge about malaria during pregnancy in areas where transmission is unstable and P. vivax is the most prevalent species, such as the Brazilian Amazon, is scarce. Here, we report a preliminary cross sectional descriptive study, carried out at the Fundação de Medicina Tropical do Amazonas, a reference centre for diagnosis and treatment of tropical diseases in the west-Amazon (Manaus, Brazil). A total of 1699 febrile childbearing age women had positive thick blood smears to Plasmodium species, between January and November 1997: 1401 (82.5%) were positive for P. vivax , 286 (16.8%) for P. falciparum and 12 (0.07%) carried mixed infections. From the malarious patients, 195 were pregnant. The ratio of P. falciparum to P. vivax infections in the group of non-pregnant infected women was 1:5.6 while it was 1:2.3 in that of pregnant infected ones. Similar rates or even proportionally more vivax infections during pregnancy were expected to occur, in function of the contraindication of primaquine with the resulting increased P. vivax relapse rates. Such an observation suggests that the mechanism of resistance/susceptibility to infection and/or malaria pathogenesis in pregnant women may differ according to Plasmodium species and that the extensively described increase in the frequencies of malaria infection during pregnancy may be specifically due to P. falciparum infection.
Resumo:
Background. In malaria-endemic areas it is recommended that febrile children be tested for malaria by rapid diagnostic test (RDT) or blood slide (BS) and receive effective malaria treatment only if results are positive. However, RDTs are known to perform less well for Plasmodium vivax. We evaluated the safety of withholding antimalarial drugs from young Papua New Guinean children with negative RDT results in areas with high levels of both Plasmodium falciparum and P. vivax infections. Methods. longitudinal prospective study of children aged 3-27 months visiting outpatient clinics for fever. RDT was administered at first visit. RDT and microscopy were performed if children returned because of persistent symptoms. Outcomes were rates of reattendance and occurrence of severe illnesses. Results. Of 5670 febrile episodes, 3942 (70%) involved a negative RDT result. In 133 cases (3.4%), the children reattended the clinic within 7 days for fever, of whom 29 (0.7%) were parasitemic by RDT or microscopy. Of children who reattended, 24 (0.7%) presented with a severe illness: 2 had lower respiratory tract infections (LRTIs) with low-density P. vivax on BS; 2 received a diagnosis of P. vivax malaria on the basis of RDT but BSs were negative; 16 had LRTIs; 3 had alternative diagnoses. Of these 24, 22 were cured at day 28. Two children died of illnesses other than malaria and were RDT and BS negative at the initial and subsequent visits. Conclusion. Treatment for malaria based on RDT results is safe and feasible even in infants living in areas with moderate to high endemicity for both P. falciparum and P. vivax infections.
Resumo:
Antimalarial drugs including the antifolate, pyrimethamine-sulfadoxine (PS), can modulate the prevalence and intensities of gametocytaemia following treatment of acute malaria infections. They may also directly influence the transmission and spread of drug insensitivity. Little is known of the effects of co-trimoxazole (Co-T), another antifolate antimalarial, on gametocytes in children with acute malaria infections. We compared the effects of Co-T and PS on the prevalence and intensities of gametocytaemia and gametocyte sex ratios in 102 children aged 0.5-12 years presenting with acute and uncomplicated falciparum malaria. Compared to pre-treatment, both drugs significantly increased gametocyte carriage post-initiation of treatment. However, gametocyte carriage was significantly lower on day 14 in those treated with Co-T than PS. Significant increase in gametocytaemia with time occurred in PS - but not Co-T-treated children. Kaplan-Meier survival curve of the cumulative probability of remaining gametocyte-free in children who were agametocytaemic at enrolment showed that by day 7 of follow up, children treated with PS had a significantly higher propensity to have developed gametocytes than in Co-T-treated children (Log-rank statistic 5.35, df = 1, P = 0.02). Gametocyte sex ratio changes were similar following treatment with both drugs. PS and Co-T treatment of acute malaria infections in children from this endemic area is associated with significant increases in prevalence and intensities of gametocytaemia but these effects are more marked in those treated with PS than Co-T.
Resumo:
Calcium-dependent protein kinases (CDPKs) are serine/threonine kinases that react in response to calcium which functions as a trigger for several mechanisms in plants and invertebrates, but not in mammals. Recent structural studies have defined the role of calcium in the activation of CDPKs and have elucidated the important structural changes caused by calcium in order to allow the kinase domain of CDPK to bind and phosphorylate the substrate. However, the role of autophosphorylation in CDPKs is still not fully understood. In Plasmodium falciparum, seven CDPKs have been identified by sequence comparison, and four of them have been characterized and assigned to play a role in parasite motility, gametogenesis and egress from red blood cells. Although PfCDPK2 was already discovered in 1997, little is known about this enzyme and its metabolic role. In this work, we have expressed and purified PfCDPK2 at high purity in its unphosphorylated form and characterized its biochemical properties. Moreover, propositions about putative substrates in P. falciparum are made based on the analysis of the phosphorylation sites on the artificial substrate myelin basic protein (MBP).
Resumo:
Antibody responses directed against the Plasmodium falciparum antigens, total extract, anti-merozoite surface protein-3 (MSP3b) and glutamate-rich protein (Glurp-R0) were studied in 42 children exposed to both Schistosoma haematobium and P. falciparum infections. The association between levels of the anti-malaria IgG subclasses and IgM with host age, sex, schistosome infection intensity and schistosome specific antibodies was studied before chemotherapeutic treatment of schistosome infections. This showed a significant negative association between schistosome infection intensity and levels of IgG1, IgG3, and IgG4 directed against malaria total extract antigen, and a positive association between levels of anti-schistosome soluble egg antigen IgG2, IgG3, and IgG4 and levels of the same subclasses directed against malaria total extract antigens. The effect of treating schistosome infections with praziquantel on malaria specific responses was also studied. This treatment resulted in increases in significant IgG4 levels against MSP3b and IgM against Glurp R0. Treatment also resulted in a significant decrease in IgG4 levels against Glurp R0. Host age, sex or pre-treatment infection intensity was not associated with the magnitude of change in the two IgG4 responses while males showed a significantly higher increase in levels of IgM. The results suggest cross reactivity between schistosome and malaria antigens in this population.
Resumo:
Chloroquine (CQ) resistance in Plasmodium falciparum contributes to increasing malaria-attributable morbidity and mortality in Sub-Saharan Africa. Despite a change in drug policy, continued prescription of CQ did not abate. Therefore the therapeutic efficacy of CQ in uncomplicated falciparum malaria patients was assessed in a standard 28-day protocol in 116 children aged between six and 120 months in Osogbo, Southwest Nigeria. Parasitological and clinical assessments of response to treatment showed that 72 (62.1%) of the patients were cured and 44 (37.9%) failed the CQ treatment. High initial parasite density and young age were independent predictors for early treatment failure. Out of the 44 patients that failed CQ, 24 received amodiaquine + sulphadoxine/pyrimethamine (AQ+SP) and 20 received chlorpheniramine + chloroquine (CH+CQ) combinations. Mean fever clearance time in those treated with AQ+SP was not significantly different from those treated with CH+CQ (p = 0.05). There was no significant difference in the mean parasite density of the two groups. The cure rate for AQ+SP group was 92% while those of CH+CQ was 85%. There was a significant difference in parasite clearance time (p = 0.01) between the two groups. The 38% treatment failure for CQ reported in this study is higher than the 10% recommended by World Health Organization in other to effect change in antimalarial treatment policy. Hence we conclude that CQ can no more be solely relied upon for the treatment of falciparum malaria in Osogbo, Nigeria. AQ+SP and CH+CQ are effective in the treatment of acute uncomplicated malaria and may be considered as useful alternative drugs in the absence of artemisinin-based combination therapies.
Resumo:
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.
Resumo:
The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region has been found in the N-terminal R0 region of the protein. Herein, we describe the antiplasmodial activity of anti-GLURP antibodies present in the sera from individuals naturally exposed to malaria in a Brazilian malaria-endemic area. The anti-R0 antibodies showed a potent inhibitory effect on the growth of P. falciparum in vitro, both in the presence (ADCI) and absence (GI) of monocytes. The inhibitory effect on parasite growth was comparable to the effect of IgGs purified from pooled sera from hyperimmune African individuals. Interestingly, in the ADCI test, higher levels of tumour necrosis factor alpha (TNF-α) were observed in the supernatant from cultures with higher parasitemias. Our data suggest that the antibody response induced by GLURP-R0 in naturally exposed individuals may have an important role in controlling parasitemia because these antibodies are able to inhibit the in vitro growth of P. falciparum with or without the cooperation from monocytes. Our results also indicate that TNF-α may not be relevant for the inhibitory effect on P. falciparum in vitro growth.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.
Resumo:
The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.
Resumo:
Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.
Resumo:
Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.
Resumo:
BACKGROUND: Rapid diagnostic tests for malaria (RDTs) allow accurate diagnosis and prompt treatment. Validation of their usefulness in travellers with fever was needed. The safety of a strategy to diagnose falciparum malaria based on RDT followed by immediate or delayed microscopy reading at first attendance was evaluated in one referral hospital in Switzerland. METHODS: A retrospective study was conducted in the outpatient clinic and emergency ward of University Hospital, covering a period of eight years (1999-2007). The study was conducted in the outpatient clinic and emergency ward of University Hospital. All adults suspected of malaria with a diagnostic test performed were included. RDT and microscopy as immediate tests were performed during working hours, and RDT as immediate test and delayed microscopy reading out of laboratory working hours. The main outcome measure was occurrence of specific complications in RDT negative and RDT positive adults. RESULTS: 2,139 patients were recruited. 1987 had both initial RDT and blood smear (BS) result negative. Among those, 2/1987 (0.1%) developed uncomplicated malaria with both RDT and BS positive on day 1 and day 6 respectively. Among the 152 patients initially malaria positive, 137 had both RDT and BS positive, four only BS positive and five only RDT positive (PCR confirmed) (six had only one test performed). None of the four initially RDT negative/BS positive and none of the five initially BS negative/RDT positive developed severe malaria while 6/137 of both RDT and BS positive did so. The use of RDT allowed a reduction of a median of 2.1 hours to get a first malaria test result. CONCLUSIONS: A malaria diagnostic strategy based on RDTs and a delayed BS is safe in non-immune populations, and shortens the time to first malaria test result.
Resumo:
Background: Malaria has come near eradication at archipelago of Cabo Verde in 1970. Infections are now only observed in Santiago, where outbreaks occur. In these islands, malaria is considered by the international community as being of limited risk and, therefore, no prophylaxis is recommended. Since the understanding of factors that determine malaria outbreaks are crucial for controlling the disease, the present study aimed to investigate if the malaria infections observed in Santiago Island are maintained in isolated foci and in asymptomatic individuals.
Resumo:
We present the first parasitological, molecular and longitudinal analysis of an isolated outbreak of malaria. This outbreak occurred on Santiago Island (Republic of Cabo Verde), a region where malaria is hypoendemic and controlled, and thus the population is considered non-immune. Blood samples were collected from the inhabitants over 1 month and during cross-sectional surveys in the following year. The presence and nature of the parasites was determined by PCR. Plasmodium falciparum was the only species detected. Genetic analysis revealed that the circulating parasites were genetically homogeneous, and probably clonal. Gametocytes were found throughout this period. Our data suggest that this represented a focal outbreak, resulting in the infection of at least 40% of the villagers with a clonal parasite line. Thus, P. falciparum infections can persist for at least 1 year in a substantial proportion (10%) of the hosts. Implications for malaria control and the interpretation of epidemiological data are discussed.