66 resultados para makespan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem. © 2013 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-preemptive two-machine flow-shop scheduling problem with uncertain processing times of n jobs is studied. In an uncertain version of a scheduling problem, there may not exist a unique schedule that remains optimal for all possible realizations of the job processing times. We find necessary and sufficient conditions (Theorem 1) when there exists a dominant permutation that is optimal for all possible realizations of the job processing times. Our computational studies show the percentage of the problems solvable under these conditions for the cases of randomly generated instances with n ≤ 100 . We also show how to use additional information about the processing times of the completed jobs during optimal realization of a schedule (Theorems 2 – 4). Computational studies for randomly generated instances with n ≤ 50 show the percentage of the two- machine flow-shop scheduling problems solvable under the sufficient conditions given in Theorems 2 – 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ebben a tanulmányban a szerző egy új harmóniakereső metaheurisztikát mutat be, amely a minimális időtartamú erőforrás-korlátos ütemezések halmazán a projekt nettó jelenértékét maximalizálja. Az optimális ütemezés elméletileg két egész értékű (nulla-egy típusú) programozási feladat megoldását jelenti, ahol az első lépésben meghatározzuk a minimális időtartamú erőforrás-korlátos ütemezések időtartamát, majd a második lépésben az optimális időtartamot feltételként kezelve megoldjuk a nettó jelenérték maximalizálási problémát minimális időtartamú erőforrás-korlátos ütemezések halmazán. A probléma NP-hard jellege miatt az egzakt megoldás elfogadható idő alatt csak kisméretű projektek esetében képzelhető el. A bemutatandó metaheurisztika a Csébfalvi (2007) által a minimális időtartamú erőforrás-korlátos ütemezések időtartamának meghatározására és a tevékenységek ennek megfelelő ütemezésére kifejlesztett harmóniakereső metaheurisztika továbbfejlesztése, amely az erőforrás-felhasználási konfliktusokat elsőbbségi kapcsolatok beépítésével oldja fel. Az ajánlott metaheurisztika hatékonyságának és életképességének szemléltetésére számítási eredményeket adunk a jól ismert és népszerű PSPLIB tesztkönyvtár J30 részhalmazán futtatva. Az egzakt megoldás generálásához egy korszerű MILP-szoftvert (CPLEX) alkalmaztunk. _______________ This paper presents a harmony search metaheuristic for the resource-constrained project scheduling problem with discounted cash flows. In the proposed approach, a resource-constrained project is characterized by its „best” schedule, where best means a makespan minimal resource constrained schedule for which the net present value (NPV) measure is maximal. Theoretically the optimal schedule searching process is formulated as a twophase mixed integer linear programming (MILP) problem, which can be solved for small-scale projects in reasonable time. The applied metaheuristic is based on the "conflict repairing" version of the "Sounds of Silence" harmony search metaheuristic developed by Csébfalvi (2007) for the resource-constrained project scheduling problem (RCPSP). In order to illustrate the essence and viability of the proposed harmony search metaheuristic, we present computational results for a J30 subset from the well-known and popular PSPLIB. To generate the exact solutions a state-of-the-art MILP solver (CPLEX) was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.