986 resultados para maize production
Resumo:
Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect hardness. Genotypes and growing environment influence the final protein and starch content and. to a lesser extent, composition. However, hardness is a highly heritable trait and, hence, when a desirable level of hardness is finally agreed upon, the breeders will quickly be able to produce material with the hardness levels required by the industry.
Resumo:
It is essential to provide experimental evidence and reliable predictions of the effects of water stress on crop production in the drier, less predictable environments. A field experiment undertaken in southeast Queensland, Australia with three water regimes (fully irrigated, rainfed and irrigated until late canopy expansion followed by rainfed) was used to compare effects of water stress on crop production in two maize (Zea mays L.) cultivars (Pioneer 34N43 and Pioneer 31H50). Water stress affected growth and yield more in Pioneer 34N43 than in Pioneer 31H50. A crop model APSIM-Maize, after having been calibrated for the two cultivars, was used to simulate maize growth and development under water stress. The predictions on leaf area index (LAI) dynamics, biomass growth and grain yield under rain fed and irrigated followed by rain fed treatments was reasonable, indicating that stress indices used by APSIM-Maize produced appropriate adjustments to crop growth and development in response to water stress. This study shows that Pioneer 31H50 is less sensitive to water stress and thus a preferred cultivar in dryland conditions, and that it is feasible to provide sound predictions and risk assessment for crop production in drier, more variable conditions using the APSIM-Maize model.
Resumo:
We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.
Resumo:
With the aim of increasing peanut production in Australia, the Australian peanut industry has recently considered growing peanuts in rotation with maize at Katherine in the Northern Territory—a location with a semi-arid tropical climate and surplus irrigation capacity. We used the well-validated APSIM model to examine potential agronomic benefits and long-term risks of this strategy under the current and warmer climates of the new region. Yield of the two crops, irrigation requirement, total soil organic carbon (SOC), nitrogen (N) losses and greenhouse gas (GHG) emissions were simulated. Sixteen climate stressors were used; these were generated by using global climate models ECHAM5, GFDL2.1, GFDL2.0 and MRIGCM232 with a median sensitivity under two Special Report of Emissions Scenarios over the 2030 and 2050 timeframes plus current climate (baseline) for Katherine. Effects were compared at three levels of irrigation and three levels of N fertiliser applied to maize grown in rotations of wet-season peanut and dry-season maize (WPDM), and wet-season maize and dry-season peanut (WMDP). The climate stressors projected average temperature increases of 1°C to 2.8°C in the dry (baseline 24.4°C) and wet (baseline 29.5°C) seasons for the 2030 and 2050 timeframes, respectively. Increased temperature caused a reduction in yield of both crops in both rotations. However, the overall yield advantage of WPDM increased from 41% to up to 53% compared with the industry-preferred sequence of WMDP under the worst climate projection. Increased temperature increased the irrigation requirement by up to 11% in WPDM, but caused a smaller reduction in total SOC accumulation and smaller increases in N losses and GHG emission compared with WMDP. We conclude that although increased temperature will reduce productivity and total SOC accumulation, and increase N losses and GHG emissions in Katherine or similar northern Australian environments, the WPDM sequence should be preferable over the industry-preferred sequence because of its overall yield and sustainability advantages in warmer climates. Any limitations of irrigation resulting from climate change could, however, limit these advantages.
Resumo:
In Nigeria, the culture of fish is gaining importance, but local fish farmers face a set back because of the stoppage on importation of fish feed. Locally available raw materials such as yam, plantain, banana, cowpeas, macuna, maize, cassava, millet, sorghum, groundnut, sunnhemp seed and brewery wastes are considered as potential materials for fish feed. These have been examined on their minimum protein contributions since this is the most expensive part of the fish feed. Alternative sources to animal proteins are also examined. Plant protein from groundnut, melon, mucuna and others compare favourably with bloodmeal mixture and thus can be used to replace the more expensive animal proteins. Pellet feed can be produced on a small scale or commercial basis from the locally available raw materials and the fish farmer is advised to seek assistance from qualified fisheries personnel
Resumo:
An experiment was carried out in farmers' gher (shrimp farm) at Bagerhat sadar upazilla, Bagerhat to ascertain the effects of three different types of feeds on the production and economics of brackishwater shrimp, Penaeus monodon for a period of 120 days. There were three treatments such as T1 (BFRI dough feed containing of 30% fish meal, 10% protein conc., 10% soya meal, 15% mustard oil cake, 18% rice bran, 5% maize, 10% wheat flour, 1% oyster shell powder and 1% vitamin premix), T2 (Commercial diet Saudi-Bangla grower) and T3 (Saudi-Bangla special feed). Each treatment had two replicates and the stocking of shrimp in each gher was 3 nos/m². Water quality parameters did not differ significantly among the treatments except water depth. Average production and net return of shrimp in different treatments varied from 404.0 to 509.0 kg/ha and Tk. 56,493.99-Tk. 84,209.60, respectively. T2 showed significantly (p<0.05) the highest production and economic return. The result of the study implied that T2 is more suitable and economically viable than that of other treatments for shrimp farming.
Resumo:
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the a-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
Resumo:
Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.
Resumo:
On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Efficient phosphorus application strategies for increased crop production in sub-Saharan West Africa
Resumo:
Comparable data are lacking from the range of environments found in sub-Saharan West Africa to draw more general conclusions about the relative merits of locally available rockphosphate (RockP) in alleviating phosphorus (P) constraints to crop growth. To fill this gap, a multi-factorial field experiment was conducted over 4 years at eight locations in Niger, Burkina Faso and Togo. These ranged in annual rainfall from 510 to 1300 mm. Crops grown were pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) either continuously or in rotation with cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). Crops were subjected to six P fertiliser treatments comprising RockP and soluble P at different rates and combined with 0 and 60 kg N ha^-1. For legumes, time trend analyses showed P-induced total dry matter (TDM) increases between 28 and 72% only with groundnut. Similarly, rotation-induced raises in cereal TDM compared to cereal monoculture were only observed with groundnut. For cereals, at the same rate of application, RockP was comparable to single superphosphate (SSP) only at two millet sites with topsoil pH-KCl <4.2 and annual average rainfall >600 mm. Across the eight sites NPK placement at 0.4 g P per hill raised average cereal yields between 26 and 220%. This was confirmed in 119 on-farm trials revealing P placement as a promising strategy to overcome P deficiency as the regionally most growth limiting nutrient constraint to cereals.