994 resultados para maize cob
Resumo:
Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.
Resumo:
Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.
Resumo:
The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.
Resumo:
The effect of abscisic acid (ABA) on the growth of maize roots maintained in the dark is investigated in relation to the root varieties and the root age, the mode of application, the concentration used and the duration of both the treatment and the culture. In all the assays, when ABA produces a significant change in root elongation, it shows an inhibitory effect which is enhanced with increasing ABA concentration. The data strongly support the hypothesis that ABA could be one of the growth inhibitors which are formed in or released from the root cap.
Resumo:
Nutrients are basically transported to the roots by mass flow and diffusion. The aim of this study was to quantify the contribution of these two mechanisms to the acquisition of macronutrients (N, P, K, Ca, Mg, and S) and cationic micronutrients (Fe, Mn, Zn, and Cu) by maize plants as well as xylem exudate volume and composition in response to soil aggregate size and water availability. The experiment was conducted in a greenhouse with samples of an Oxisol, from under two management systems: a region of natural savanna-like vegetation (Cerradão, CER) and continuous maize under conventional management for over 30 years (CCM). The treatments were arranged in a factorial [2 x (1 + 2) x 2] design, with two management systems (CER and CCM), (1 + 2) soil sifted through a 4 mm sieve and two aggregate classes (< 0.5 mm and 0.5 - 4.0 mm) and two soil matric potentials (-40 and -10 kPa). These were evaluated in a randomized block design with four replications. The experiment was conducted for 70 days after sowing. The influence of soil aggregate size and water potential on the nutrient transport mechanisms was highest in soil samples with higher nutrient concentrations in solution, in the CER system; diffusion became more relevant when water availability was higher and in aggregates < 0.5 mm. The volume of xylem exudate collected from maize plants increased with the decrease in aggregate size and the increased availability of soil water in the CER system. The highest Ca and Mg concentrations in the xylem exudate of plants grown on samples from the CER system were related to the high concentrations of these nutrients in the soil solution of this management system.
Resumo:
An experiment was conducted in a growth chamber to evaluate characteristics of the rhizosphere of maize genotypes contrasting in P-use efficiency, by determining length and density of root hairs, the rhizosphere pH and the functional diversity of rhizosphere bacteria. A sample of a Red Oxisol was limed and fertilized with N, K and micronutrients. In the treatment with the highest P level, 174 mg kg-1 P was added. Each experimental unit corresponded to a PVC rhizobox filled with 2.2 dm-3 soil. The experiment was completely randomized with three replications in a 5 x 2 factorial design, corresponding to five genotypes (H1, H2 and H3 = P-efficient hybrids, H4 and H5 = P-inefficient hybrids) and two P levels (low = 3 mg dm-3, high = 29 mg dm-3). It was found that 18 days after transplanting, the nodal roots of the hybrids H3 and H2 had the longest root hairs. In general, the pH in the rhizosphere of the different genotypes was higher than in non-rhizosphere soil, irrespective of the P level. The pH was higher in the rhizosphere of lateral than of nodal roots. At low P levels, the pH variation of the hybrids H2, H4 and H5 was greater in rhizospheric than in non-rhizospheric soil. The functional microbial activity in the rhizosphere of the hybrids H3 and H5 was highest. At low soil P levels, the indices of microbial functional diversity were also higher. The microbial metabolic profile in the rhizosphere of hybrids H1, H2, H3, and H5 remained unaltered when the plants were grown at low P. The variations in the rhizosphere properties could not be related to patterns of P-use efficiency in the tested genotypes.
Resumo:
This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.
Resumo:
The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol). The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing). Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1) sidedressed as urea (rates split in four applications at harvests in winter/spring), as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping). Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.
Resumo:
In Brazilian agriculture, urea is the most commonly used nitrogen (N) source, in spite of having the disadvantage of losing considerable amounts of N by ammonia-N volatilization. The objectives of this study were to evaluate: N lossby ammonia volatilization from: [urea coated with copper sulfate and boric acid], [urea coated with zeolite], [urea+ammonium sulfate], [urea coated with copper sulfate and boric acid+ammonium sulfate], [common urea] and [ammonium nitrate]; and the effect of these N source son the maize yield in terms of amount and quality. The treatments were applied to the surface of a soil under no-tillage maize, in two growing seasons. The first season (2009/2010) was after a maize crop (maize straw left on the soil surface) and the second cycle (2012/2011) after a soybean crop. Due to the weather conditions during the experiments, the volatilization of ammonia-N was highest in the first four days after application of the N sources. Of all urea sources, under volatilization-favorable conditions, the loss of ammonia from urea coated with copper sulfate and boric acid was lowest, while under high rainfall, the losses from the different urea sources was similar, i.e., an adequate rainfall was favorablet o reduce volatilization. The ammonia volatilization losses were greatest in the first four days after application. Maize grain yield differed due to N application and in the treatments, but this was only observed with cultivation of maize crop residues in 2009/2010. The combination of ammonium+urea coated with copper sulfate and boric acid optimized grain yield compared to the other urea treatments. The crude protein concentration in maize was not influenced by the technologies of urea coating.
Resumo:
Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.
Resumo:
A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N), in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD) chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.
Resumo:
Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol), as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2-) up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE) rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.
Resumo:
Crop residues on the soil surface of no-till systems can intensify ammonia volatilization from N fertilizers applied to cereal crops. This study assessed the magnitude of N losses through ammonia volatilization from urea applied to no-till winter (wheat) and summer crops (maize) on a Typic Hapludox in the south-central region of Paraná, southern Brazil. In addition, the potential of alternative N sources (urea with urease inhibitor, liquid fertilizer, ammonium nitrate and ammonium sulfate) and different urea managements (fertilizer applied in the morning or afternoon) were evaluated. Two experiments with maize and wheat were carried out for two years, arranged in a randomized block design with four replications. Nitrogen volatilization losses were assessed with a semi-open static collector until 21 days after fertilization. In winter, the losses were low (<5.5 % of applied N) for all N sources, which were not distinguishable, due to the low temperatures. In the summer, volatilization rates from urea were higher than in the winter, but did not exceed 15 % of applied N. The main factor decreasing N losses in the summer was the occurrence of rainfall in the first five days after fertilization. Urea with urease inhibitor, nitrate and ammonium sulfate were efficient to decrease ammonia volatilization in maize, whereas the application time (morning or afternoon) had no influence.
Resumo:
Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94) and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N). After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal) were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA) and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.
Resumo:
Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr) and far-red fluorescence (FFr) ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1) and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1). Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.