967 resultados para magnetic nanoparticles


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnetic nanoparticles of nickel substituted cobalt ferrite (NixCo1-xFe2O4:0 <= x <= 1) have been synthesized by co-precipitation route. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak and transmission electron microscopy (TEM) techniques was found in the range 18-28 +/- 4 nm. Energy dispersive X-ray (EDX) analysis confirms the presence of Co, Ni, Fe and oxygen as well as the desired phases in the prepared nanoparticles. The selective area electron diffraction (SAED) analysis confirms the crystalline nature of the prepared nanoparticles. Data collected from the magnetization hysteresis loops of the samples show that the prepared nanoparticles are highly magnetic at room temperature. Both coercivity and saturation magnetization of the samples were found to decrease linearly with increasing Ni-concentration in cobalt ferrite. Superparamagnetic blocking temperature as determined from the zero field cooled (ZFC) magnetization curve shows a decreasing trend with increasing Ni-concentration in cobalt ferrite nanoparticles. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spinel ferrite, MFe2O4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor. The nanoporous structure was formed during the decomposition of PVP and inorganic salts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fe3O4-polylactide (PLA) core-shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of L-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water solubility and surface functionalization of magnetic nanoparticles are crucial for bioapplication.[1]In this study,we presented a facile coprecipitation approach to synthesize lysine stabilized Fe3O4 nanoparticles.Lysine functionalized magnetite nanoparticles show an excellent colloidal stability of >20h.The as-synthesized magnetite nanoparticles have abundant amine groups on their surface which provide convenient sites for covalent linking of biological macromolecules.We believe that these amine-functionalized magnetic nanoparticles can be potentially used in fields such as magnetic bio-separation,immunoassay,MRI,and targeted drug delivery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cobalt ferrite one-dimensional nanostructures (nanoribbons and nanofibers) were prepared by electrospinning combined with sol-gel technology. The nanoribbons and nanofibers were formed through assembling magnetic nanoparticles with poly(vinyl pyrrolidone) (PVP) as the structure-directing template. Nanoribbons and nanofibers were obtained after calcining the precursor nanoribbons at different temperatures. Successive Ostwald ripening processes occur during the formation of CoFe2O4 nanoribbons and nanofibers. The sizes of nanoparticles varied with calcination temperatures, which leads to different one-dimensional structures and variable magnetic properties. These novel magnetic one-dimensional structures can potentially be used in nanoelectronic devices, magnetic sensors, and flexible magnets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnetic luminescent nanocomposites were prepared via a layer-by-layer (LbL) assembly approach. The Fe3O4 magnetic nanoparticles of 8.5 nm were used as a template for the deposition of the CdTe quantum dots (QDs)/polyelectrolyte (PE) multilayers. The number of polyelectrolyte multilayers separating the nanoparticle layers and the number of QDs/ polyelectrolyte deposition cycles were varied to obtain two kinds of magnetic luminescent nanocomposites, Fe3O4/PEn/CdTe and Fe3O4/(PE3/CdTe)(n), respectively. The assembly processes were monitored through microelectrophoresis and UV-vis spectra. The topography and the size of the nanocomposites were studied by transmission electron microscopy. The LbL technique for fabricating magnetic luminescent nanocomposites has some advantages to tune their properties. It was found that the selection of a certain number of the inserted polyelectrolyte interlayers and the CdTe QDs loading on the nanocomposites could optimize the photoluminescence properties of the nanocomposites. Furthermore, the nanocomposites could be easily separated and collected in an external magnetic field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nanosized ZnFe2O4 particles containing traces of a-Fe2O3 by intent were produced by low temperature chemical coprecipitation methods. These particles were subjected to high-energy ball milling. These were then characterised using X-ray diffraction, magnetisation and dielectric studies. The effect of milling on zinc ferrite particles have been studied with a view to ascertaining the anomalous behaviour of these materials in the nanoregime. X-ray diffraction and magnetisation studies carried out show that these particles are associated with strains and it is the surface effects that contribute to the magnetisation. Hematite percentage, probably due to decomposition of zinc ferrite, increases with milling. Dielectric behaviour of these particles is due to interfacial polarisation as proposed by Koops. Also the defects caused by the milling produce traps in the surface layer contributes to dielectric permittivity via spin polarised electron tunnelling between grains. The ionic mechanism is enhanced in dielectrics with the rise in temperature which results in the increase of dielectric permittivity with temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face-centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high-temperature chemically ordered face-centered tetragonal (fct) structure. The fee FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh-density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 degrees C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene-like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon-coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite-coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel and generic miniaturization methodology for the determination of partition coefficient values of organic compounds in noctanol/water by using magnetic nanoparticles is, for the first time, described. We have successfully designed, synthesised and characterised new colloidal stable porous silica-encapsulated magnetic nanoparticles of controlled dimensions. These nanoparticles absorbing a tiny amount of n-octanol in their porous silica over-layer are homogeneously dispersed into a bulk aqueous phase (pH 7.40) containing an organic compound prior to magnetic separation. The small size of the particles and the efficient mixing allow a rapid establishment of the partition equilibrium of the organic compound between the solid supported n-octanol nano-droplets and the bulk aqueous phase. UV-vis spectrophotometry is then applied as a quantitative method to determine the concentration of the organic compound in the aqueous phase both before and after partitioning (after magnetic separation). log D values of organic compounds of pharmaceutical interest (0.65-3.50), determined by this novel methodology, were found to be in excellent agreement with the values measured by the shake-flask method in two independent laboratories, which are also consistent with the literature data. It was also found that this new technique gives a number of advantages such as providing an accurate measurement of log D value, a much shorter experimental time and a smaller sample size required. With this approach, the formation of a problematic emulsion, commonly encountered in shake-flask experiments, is eliminated. It is envisaged that this method could be applicable to the high throughput log D screening of drug candidates. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The majority of research on magnetic nanoparticles has focused on optical, electrical, and magnetic storage areas. Recently, the application of magnetic nanoparticles as magnetically separable nanovehicles for chemical or biological species has become an area of intensive research but with rather different challenging criteria that are yet to be addressed. For example, the enhancement of intrinsically weak magnetic properties, avoidance of magnetic interactions among particles, and improvement of the stability of the nanoparticles remain key issues. Here, it is demonstrated using sequential nanochemistry preparation techniques that exchange-coupled nanomagnets, such as FePt-Fe3Pt or FePt-Fe3O4 with dramatically enhanced magnetization, can be placed inside a silica nanosphere. The advantages of enhanced magnetization and the provision of protective coating and anchored sites on the silica shell surface render these new coated particles suitable for use in magnetic separation.