996 resultados para magnetic composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultra fine nickel ferrite have been synthesized by the sol-gel method. By heat treating different portions of the prepared powder separately at different temperatures, nano-sized particles of nickel ferrite with varying particle sizes were obtained. These powders were characterised by the X-ray diffraction and then incorporated in the nitrile rubber matrix according to a specific recipe for various loadings. The cure characteristics and the mechanical properties of these rubber ferrite composites (RFCs) were evaluated. The effect of loading and the grain size of the filler on the cure characteristics and tensile properties were also evaluated. It is found that the grain size and porosity of the filler plays a vital role in determining the mechanical properties of the RFCs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscoelastic properties of siloxane-poly(oxypropylene) (PPO) nanocomposites prepared by the sol-gel process has been analyzed during gelation by dynamic rheological measurements. The changes of storage and loss moduli, complex viscosity and phase angle has been measured as a function of time showing the newtonian viscosity of the sol in the initial step of gelation, and its progressive transformation to a viscoelastic gel. The rheologic properties have been correlated to mass fractal, nearly linear growth models and percolation theory. This study, completed by quasi-elastic light scattering and Si-29 solid state nuclear magnetic resonance measurements, shows that the mechanisms of gelation of siloxane-PPO hybrids depend on the molecular weight of the polymer and on the pH of the hybrid sol. For hybrids prepared in acid medium, a polymerization involving silicon reactive species located at the extremity of the polymer chains and presenting a functionality f = 2 occurs, forming a fractal structure during the first stage of sol-gel transition. For samples prepared under neutral pH, the fractal growth is only observed for hybrids containing short polymer chains (M-w similar to 130 gmol(-1)). The fractal dimensionality determined from the change in the rheological properties, indicates that the fractal growth mechanism changes from reaction-limited to diffusion-limited aggregation when the molecular weight of the PPO increases from 130 to 4000 gmol(-1) and as catalyst conditions change from acidic to neutral. Near the gel point, these hybrid gels have the typical scaling behavior expected from percolation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent siloxane-polymethylmethacrylate (PMMA) hybrids were synthesized by the sol-gel process through hydrolysis of methacryloxyproyltrimethoxysilane (TMSM), tetramethoxysilane (TMOS) and polymerization of methylmethacrylate (MMA) using benzol peroxide (BPO) as catalyst. These composites have a good chemical stability due to the presence of covalent bonds between the inorganic (siloxane) and organic (PMMA) phases. The effects of siloxane content, pH of the initial sol and BPO content on the structure of the dried gels were analyzed by small-angle X-ray scattering (SAXS). SAXS results revealed the presence of an interference (or correlation) peak at medium q-range for all compositions, suggesting that siloxane groups located at the ends of PMMA chains form isolated clusters that are spatially correlated. The average intercluster distance - estimated from the q-value corresponding to the maximum in SAXS spectra - decreases for samples prepared with increasing amount of TMSM-TMOS. This effect was assigned to the expected increase in the number density of siloxane groups for progressively higher siloxane content. The increase of BPO content promotes a more efficient polymerization of MMA monomers but has no noticeable effect on the average intercluster distance. High pH favors polycondensation reactions between silicon species of both TMOS and TMSM silicon alcoxides, leading to a structure in which all siloxane clusters are bonded to PMMA chains. This effect was confirmed by Si-29 nuclear-magnetic resonance (NMR) measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the spin concentration and the crystallinity in different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to the factors: composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The magnetic properties of the composites were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) was calculated. The crystallinity of the composites tested was characterized with X-ray diffraction (XRD). Filtek P60 and Filtek Z250 presented similarities in terms of spin concentration and crystallinity, irrespective of the material condition. The aging protocol influenced the composite Filmic Z350XT that exhibited a significant increase in the spin concentration. Besides, lower intensity peaks of the organic matrix and amorphous silica were also observed for both aged and expired Filtek Z350XT. Although a significant lower spin concentration was observed for the silorane composite in comparison to that of the methacrylates, a decrease in the relative intensity of peaks of the amorphous region related to the organic components in the diffractograms was observed. The material conditions tested influence the crystallinity and the magnetic properties of the composites evaluated. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and magnetic properties of a Fe-based alloy before and after sintering have been analyzed. X ray diffraction measurements confirm the deformation of the magnetic particles in the compacted samples. After sintering, hysteresis energy dissipation, remanence and intrinsic coercivity differ by less than 10% as porosity changes from 15 to 7%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual phase such as the phase connectivity, phase size, shape and spatial arrangement. This dissertation mainly focuses on the computational study of microstructure – property – mechanism relations in two representative ferroic composites, i.e., two-phase particulate magnetoelectric (ME) composite and polymer matrix ferroelectric composite. The former is a great example of ferroic composite exhibiting a new property and functionality that neither of the constituent phases possesses individually. The latter well represents the kind of ferroic composites having property combinations that are better than the existing materials. Phase field modeling was employed as the computing tool, and the required models for ferroic composites were developed based on existing models for monolithic materials. Extensive computational simulations were performed to investigate the microstructure-property relations and the underlying mechanism in ferroic composites. In particulate, it is found that for ME composite 0-3 connectivity (isolated magnetostrictive phase) is necessary to exhibit ME effect, and small but finite electrical conductivity of isolated magnetic phase can beneficially enhance ME effect. It is revealed that longitudinal and transverse ME coefficients of isotropic 0-3 particulate composites can be effectively tailored by controlling magnetic domain structures without resort to anisotropic two-phase microstructures. Simulations also show that the macroscopic properties of the ferroelectricpolymer composites critically depend on the ferroelectric phase connectivity while are not sensitive to the sizes and internal grain structures of the ceramic particles. Texturing is found critical to exploit the paraelectric«ferroelectric phase transition and nonlinear polarization behavior in paraelectric polycrystal and its polymer matrix composite. Additionally, a Diffuse Interface Field model was developed to simulate packing and motion in liquid phase which is promising for studying the fabrication of particulatepolymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid magnetic carbon composites have been recently proposed as the next step in the evolution of catalysts for catalytic wet peroxide oxidation (CWPO), with several synergistic effects arising from the combination of the high catalytic activity of metal species with the proven catalytic properties of carbon-based materials in CWPO [1]. Bearing this in mind, this work sought the development of novel magnetic carbon xerogels, composed by interconnected carbon microspheres with iron (Fe) and/or cobalt (Co) microparticles embedded in their structure. As inferred from the extensive characterization performed, materials with distinctive properties were obtained upon inclusion of different metal precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic polymer nanofibres intended for drug delivery have been designed and fabricated by electrospinning. Magnetite (Fe3O4) nanoparticles were successfully incorporated into electrospun nanofibre composites of two cellulose derivatives, dehydroxypropyl methyl cellulose phthalate (HPMCP) and cellulose acetate (CA), while indomethacin (IDN) and aspirin have been used as model drugs. The morphology of the neat and magnetic drug-loaded electrospun fibres and the release characteristics of the drugs in artificial intestinal juice were investigated. It was found that both types of electrospun composite nanofibres containing magnetite nanoparticles showed superparamagnetism at room temperature, and their saturation magnetisation and morphology depend on the Fe3O4 nanoparticle content. Furthermore, the presence of the magnetite nanoparticles did not affect the drug release profiles of the nanofibrous devices. The feasibility of controlled drug release to a target area of treatment under the guidance of an external magnetic field has also been demonstrated, showing the viability of the concept of magnetic drug-loaded polymeric composite nanofibres for magneto-chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive samplers are not only a versatile tool to integrate environmental concentrations of pollutants, but also to avoid the use of live sentinel organisms for environmental monitoring. This study introduced the use of magnetic silicone polymer composites (Fe-PDMS) as passive sampling media to pre-concentrate a wide range of analytes from environmental settings. The composite samplers were assessed for their accumulation properties by performing lab experiments with two model herbicides (Atrazine and Irgarol 1051) and evaluated for their uptake properties from environmental settings (waters and sediments). The Fe-PDMS composites showed good accumulation of herbicides and pesticides from both freshwater and saltwater settings and the accumulation mechanism was positively correlated with the log Kow value of individual analytes. Results from the studies show that these composites could be easily used for a wide number of applications such as monitoring, cleanup, and/or bioaccumulation modeling, and as a non-intrusive and nondestructive monitoring tool for environmental forensic purposes.