425 resultados para magnet loturak
Resumo:
Prosthetic rehabilitation of the midfacial defects has always perplexed prosthodontists. These defects lead to functional and esthetic deficiencies. The purpose of this clinical case report was the presentation of the prosthetic rehabilitation of an extraoral-intraoral defect using two-piece prosthesis magnetically connected. This prosthesis has dramatically improved the patient’s speech, mastication, swallowing, and esthetic.
Resumo:
In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by amagnetic field in NiCl2 center dot 4SC(NH2)(2) (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z = d; moreover the correlation length exponent is found to be nu = 0.75(10), and the order parameter exponent to be beta = 0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher et al. [Phys. Rev. B 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.
Resumo:
This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The method is based on an extension of classical dq transformation that makes it possible to write a vectorial model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the application of that transformation in the classical machine per-phase model. That transformation can be applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine, considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs a classical six-step mode as a converter. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
We report on the measurements of both vertical and lateral levitation forces between a permanent magnet NdFeB and a polycrystalline YBa4Cu6O7-delta superconductor. The analysis of the obtained results revealed an interesting correlation between the behavior of the forces in the field-cooled and zero-field-cooled regimes, resembling the structure of the so-called susceptibility spectrum chi ''(chi'). Such force-force diagrams can be useful for identifying flux distribution structure inside a superconducting material. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743006]
Resumo:
Dimensional analysis was employed to develop a predictive formula for the terminal velocity for a magnet dropped down a metallic tube. In this particular application, the technique succeeded in generating the same formula theoretically derived and that has been published by others. The analysis thus presented suggests other applications that can be developed for motivating in the use of the technique.
Resumo:
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation and superfluidity, which have been tested experimentally in a variety of different systems. When bosons interact, disorder can destroy condensation, leading to a 'Bose glass'. This phase has been very elusive in experiments owing to the absence of any broken symmetry and to the simultaneous absence of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (bromine-doped dichloro-tetrakis-thiourea-nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand canonical ensemble; bromine doping introduces disorder into the hopping and interaction strength of the bosons, leading to their localization into a Bose glass down to zero field, where it becomes an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the Bose-Einstein condensate (corresponding to a magnetically ordered phase) is marked by a universal exponent that governs the scaling of the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents a quantitative experimental account of the universal features of disordered bosons in the grand canonical ensemble.
Resumo:
Realisierung des 3He-Kreislaufs zur 3He-Magnet-Resonanz-Tomographie In der vorliegenden Dissertation wurde ein 3He-Kreislauf für die 3He-Magnet-Resonanz-Tomographie realisiert. Dazu wurde eine einfache Methode entwickelt, mit deren Hilfe es möglich ist,die Kernspinpolarisation von hyperpolarisiertem 3He bei hohen Drucken zu bestimmen.Bei einem Druck von ca. 3 bar konnte die Polarisation bis auf einen relativen Fehlervon etwa 5 % genau bestimmt werden. Zum Transport des polarisierten 3He wurden Magnetfelder konstruiert, die in einem Volumenbis zu V = 13,8 l ein homogenes Führungsfeld bereitstellen. Diese besitzen eineabschirmende Wirkung auf äußere Felder, und die benötigten magnetischen Flußdichten vonetwa 8 Gauá werden durch Permanentmagneten erzeugt. Bei geschwindigkeitsgewichteten Untersuchungen an zylindrischen Phantomen und Probandenkonnte laminare Strömung von 3He-Luftgemischen mit der Methode der 3He-vMRT bestimmtwerden. Bei zweidimensionalen Untersuchungen ließen sich laminare Strömungsprofile mitihren absoluten, ortsabhängigen Geschwindigkeiten ermitteln, während eindimensionalenMessungen ebenfalls laminare Strömungsprofile zeigten. Mit einer eigens entwickelten He-Aufbereitung wurden bis zu 95,8 % des eingeatmetenHeliums aus dem ausgeatmeten Gas zurückgewonnen. Der Anfangsgehalt an Helium betrugetwa 2 % und konnte um mehr als 6 Größenordnungen angereichert werden. Die Gasreinheitreichte aus, um eine erneute Polarisation des 3He zu ermöglichen. Die erreichteMaximalpolarisation lag dabei nur geringfügig unter der mit originalem 3He.
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
A two-dimensional model to analyze the distribution of magnetic fields in the airgap of a PM electrical machines is studied. A numerical algorithm for non-linear magnetic analysis of multiphase surface-mounted PM machines with semi-closed slots is developed, based on the equivalent magnetic circuit method. By using a modular structure geometry, whose the basic element can be duplicated, it allows to design whatever typology of windings distribution. In comparison to a FEA, permits a reduction in computing time and to directly changing the values of the parameters in a user interface, without re-designing the model. Output torque and radial forces acting on the moving part of the machine can be calculated. In addition, an analytical model for radial forces calculation in multiphase bearingless Surface-Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. It allows to predict amplitude and direction of the force, depending on the values of torque current, of levitation current and of rotor position. It is based on the space vectors method, letting the analysis of the machine also during transients. The calculations are conducted by developing the analytical functions in Fourier series, taking all the possible interactions between stator and rotor mmf harmonic components into account and allowing to analyze the effects of electrical and geometrical quantities of the machine, being parametrized. The model is implemented in the design of a control system for bearingless machines, as an accurate electromagnetic model integrated in a three-dimensional mechanical model, where one end of the motor shaft is constrained to simulate the presence of a mechanical bearing, while the other is free, only supported by the radial forces developed in the interactions between magnetic fields, to realize a bearingless system with three degrees of freedom. The complete model represents the design of the experimental system to be realized in the laboratory.