1000 resultados para luminescence mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TiO2 gel doped with UO22+ and Eu3+ has been prepared by a sol-gel method. The quenching of the UO22+ emission by Eu3+ and the energy transfer from the excited state of UO22+ to the ground state oh Eu3+ have been investigated. The energy transfer has been studied by the measurement of luminescence lifetime tau, calculations of energy transfer efficiency eta(ET) and energy transfer rate W-ET The experimental results indicated that the quenching is combined static and dynamic mechanism, but the static mechanism is dominant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with aromatic acids and 1,10-phenanthroline have been synthesized. The lowest triplet state energies of ligands have been obtained by measuring the phosphorescence spectra of binary gadolinium complexes. By comparing the phosphorescence spectra of binary complexes with those of ternary ones, it is found that there exists another intramolecular energy transfer process from the aromatic acids to 1,10-phenanthroline besides the intramolecular energy transfer process between the aromatic acids and the central rare earth ions. The intramolecular energy transfer efficiencies have been calculated by determining phosphorescence lifetimes of binary and ternary gadolinium complexes. The luminescence properties of corresponding europium and terbium complexes are in agreement with the prediction based on energy transfer mechanism. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of Eu3+ to Eu2+ in SrB6O10 prepared in air by a high-temperature solid state reaction was studied. The luminescent properties of Eu2+ in this matrix show f-d broad band emission peaking at about 386 and 432 nm at room temperature. A charge compensation mechanism is proposed as a possible explanation. The luminescence of Eu3+ with f-f transitions was studied in this sample and reflected that the Eu3+ ion occupied a site with non-centro-symmetry. The ESR spectrum was used to detect the existence of Eu2+ in the samples. (C) 1998 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new amphiphilic rare earth complexes with only two organic long chains Ln (MOP)(2)Cl (MOP=monooctadecyl phthalate, Ln=Eu, Tb, Gd) were synthesized and characterized by elemental analysis. The complexes (Eu, Tb) showed good luminescence property with long fluorescence lifetime, whereas the intensity and lifetime of Tb complex are greater than those of Eu complex, By measuring the triplet energy levels of ligand based on energy transfer mechanism, above phenomena have been well explained. The Langmuir films of the complexes on the air/water interface were also studied and the results show that all of them have good film-forming property.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of binary and ternary rare earth complexes with para-substitued benzoic acids and 1,10-phenanthroline were synthesized. The phosphorescence spectra were measured and the lowest tripler state energies of ligands were determined, the phosphorescence lifetimes were obtained and intramolecular energy transfer mechanism between ligands was studied. The luminescence properties were also measured and were in agreement with the prediction. The energy match and intramolecular energy transfer process in these binary and ternary complexes were discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient reddish orange emission MgSrAl(10)O(17):Sm(3+) phosphor was prepared by the combustion method. The phosphor has been characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis measurements. Photoluminescence spectrum revealed that samarium ions are present in trivalent oxidation states. The phosphor exhibits two thermally stimulated luminescence (TSL) peaks at 210 degrees C and 450 degrees C. Electron spin resonance studies were carried out to identify the defect centres responsible for the TSL process in MgSrAl(10)O(17):Sm(3+) phosphor. Three defect centres have been identified in irradiated phosphor and these centres are tentatively assigned to an O(-) ion and F(+) centres. O(-) ion (hole centre) correlates with the 210 degrees C TSL peak while one of the F+ centres (electron centre) appears to relate to the 450 degrees C TSL peak. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of natural andalusite (Al(2)SiO(5)) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 degrees C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 degrees C. The EPR spectra of natural samples heat-treated at 600 degrees C for 30 min show signals at g = 5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 degrees C for 30 min followed gamma irradiation. This line was attributed to Ti(3+) centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe(3+). Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 degrees C can be attributed to the same defect center. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er(3+) doped Y(2)O(3) phosphor was prepared by the solution combustion method and characterized using powder x-ray diffraction and energy-dispersive analysis of x-ray mapping studies. Room temperature near infrared (NIR) to green up-conversion (UC) emissions in the region 520-580 nm {((2)H(11/2), (4)S(3/2)) -> (4)I(15/2)} and red UC emissions in the region 650-700 nm ((4)F(9/2) -> (4)I(15/2)) of Er(3+) ions have been observed upon direct excitation to the (4)I(11/2) level using similar to 972 nm laser radiation of nanosecond pulses. The possible mechanisms for the UC processes have been discussed on the basis of the energy level scheme, the pump power dependence as well as based on the temporal evolution. The excited state absorption is observed to be the dominant mechanism for the UC process. Y(2)O(3) : Er exhibits one thermally stimulated luminescence (TSL) peak around 367 degrees C. Electron spin resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TSL peak. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centres. One of them (centre I) with principal g-values g(parallel to) = 2.0415 and g(perpendicular to) = 2.0056 is identified as O(2)(-) centre while centre II with an isotropic g-factor 2.0096 is assigned to an F(+)-centre (singly ionized oxygen vacancy). Centre III is also assigned to an F(+)-centre with a small g-factor anisotropy (g(parallel to) = 1.974 and g(perpendicular to) = 1.967). Additional defect centres are observed during thermal annealing experiments and one of them appearing around 330 degrees C grows with the annealing temperature. This centre (assigned to an F(+)-centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and the F-centre appears to correlate with the observed TSL peak in Y2O3 : Er phosphor. The trap depth for this peak has been determined to be 0.97 eV from TSL data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr(2)MgSi(2)O(7):Eu(2+),R(3+) material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 A degrees C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R(3+) co-dopants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline Eu(2+) and Dy(3+) doped barium aluminate materials, BaAl(2)O(4):Eu(2+),Dy(3+), were prepared with solid state reactions at temperatures between 700 and 1500 degrees C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 degrees C follow the formation of BaAl(2)O(4) composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu(2+) band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu(2+)) and co-clopant (Dy(3+)) concentrations affect the crystallinity and luminescence properties of the materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the photoluminescent properties of the complex diequatris(thenoyltrifluoroacetonate) europium(III), which was adsorbed or supported on tubes of modified surface silica matrix. The luminescence data and the experimental intensity parameter results evidence the existence of high interactions between the complex [Eu(tta)(3)(H2O)(2)] and the modified surface matrix. The anchored complex on macroporous silica shows higher intensity parameter values suggesting that the Eu-0 bond becomes more covalent than the adsorbed one. Therefore, the hypersensitive character of the D-5(0) --> F-7(2) transition increases evidencing a high contribution of the dynamic coupling mechanism possibly due to highly polarizable chemical environments occupied by europium(III) ion. The lifetimes of the complex on silica matrices were measured. (C) 2001 Elsevier B.V. Ltd. All rights reserved.