925 resultados para low-resolution
Resumo:
In this paper, we propose a super resolution (SR) method for synthetic images using FeatureMatch. Existing state-of-the-art super resolution methods are learning based methods, where a pair of low-resolution and high-resolution dictionary pair are trained, and this trained pair is used to replace patches in low-resolution image with appropriate matching patches from the high-resolution dictionary. In this paper, we show that by using Approximate Nearest Neighbour Fields (ANNF), and a common source image, we can by-pass the learning phase, and use a single image for dictionary. Thus, reducing the dictionary from a collection obtained from hundreds of training images, to a single image. We show that by modifying the latest developments in ANNF computation, to suit super resolution, we can perform much faster and more accurate SR than existing techniques. To establish this claim we will compare our algorithm against various state-of-the-art algorithms, and show that we are able to achieve better and faster reconstruction without any training phase.
Resumo:
Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.
Resumo:
This contribution is the first part of a four-part series documenting the development of B:RUN, a software program which reads data for common spreadsheets and presents them as low-resolution maps of slates and processes. The program emerged from a need which arose during a project in Brunei Darussalam for a 'low level' approach for researchers to communicate findings as efficiently and expeditiously as possible. Part I provides a overview of the concept and design elements of B:RUN. Part II will highlight results of the economics components of the program evaluating different fishing regimes, sailing distances from ports and fleet operating costs. Environmental aspects will be presented in Part III in the form of overlay maps. Part IV will summarize the implications of B:RUN results to coastal and fishery resources management in Brunei Darussalam and show how this approach can be adapted to other coastlines and used as a teaching and training tool. The following three parts will be published in future editions of Naga, the ICLARM Quarterly. The program is available through ICLARM.
Resumo:
A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE) array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps). A prototype chip with 64 x 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mu m Standard CMOS process. The area size of chip is 1.5 mm x 3.5 mm. Each pixel size is 9.5 mu m x 9.5 mu m and each processing element size is 23 mu m x 29 mu m. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.
Resumo:
Multi-frame image super-resolution (SR) aims to utilize information from a set of low-resolution (LR) images to compose a high-resolution (HR) one. As it is desirable or essential in many real applications, recent years have witnessed the growing interest in the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes a linear observation model to construct the relationship between the recorded LR images to the unknown reconstructed HR image estimates. Recently, regularization-based schemes have been demonstrated to be effective because SR reconstruction is actually an ill-posed problem. Working within this promising framework, this paper first proposes two new regularization items, termed as locally adaptive bilateral total variation and consistency of gradients, to keep edges and flat regions, which are implicitly described in LR images, sharp and smooth, respectively. Thereafter, the combination of the proposed regularization items is superior to existing regularization items because it considers both edges and flat regions while existing ones consider only edges. Thorough experimental results show the effectiveness of the new algorithm for SR reconstruction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Neighbor embedding algorithm has been widely used in example-based super-resolution reconstruction from a single frame, which makes the assumption that neighbor patches embedded are contained in a single manifold. However, it is not always true for complicated texture structure. In this paper, we believe that textures may be contained in multiple manifolds, corresponding to classes. Under this assumption, we present a novel example-based image super-resolution reconstruction algorithm with clustering and supervised neighbor embedding (CSNE). First, a class predictor for low-resolution (LR) patches is learnt by an unsupervised Gaussian mixture model. Then by utilizing class label information of each patch, a supervised neighbor embedding is used to estimate high-resolution (HR) patches corresponding to LR patches. The experimental results show that the proposed method can achieve a better recovery of LR comparing with other simple schemes using neighbor embedding.
Resumo:
We examined the taxonomic resolution of zooplankton data required to identify ocean basin scale biogeographic zonation in the Southern Ocean. A 2,154 km transect was completed south of Australia. Sea surface temperature (SST) measured at 1 min intervals showed that seven physical zones were sampled. Zooplankton were collected at a spatial resolution of similar to 9.2 km with a continuous plankton recorder, identified to the highest possible taxonomic resolution and enumerated. Zooplankton assemblage similarity between samples was calculated using the Bray-Curtis index for the taxonomic levels of species, genus, family, order and class after first log(10)(x + 1) (LA) and then presence/absence (PA) transformation of abundance data. Although within and between zone sample similarity increased with decreasing taxonomic resolution, for both data transformations, cluster analysis demonstrated that the biogeographic separation of zones remained at all taxonomic levels when using LA data. ANOSIM confirmed this, detecting significant differences in zooplankton assemblage structure between all seven a priori determined physical zones for all taxonomic levels when using the LA data. In the case of the PA data for the complete data set, and both LA and PA data for a crustacean only data set, no significant differences were detected between zooplankton assemblages in the Polar frontal zone (PFZ) and inter-PFZ at any taxonomic level. Loss of information at resolutions below the species level, particularly in the PA data, prevented the separation of some zones. However, the majority of physical zones were biogeographically distinct from species level to class using both LA and PA transformations. Significant relationships between SST and zooplankton community structure, summarised as NMDS scores, at all taxonomic levels, for both LA and PA transformations, and complete and crustacean only data sets, highlighted the biogeographic relevance of low resolution taxonomic data. The retention of biogeographic information in low taxonomic resolution data shows that data sets collected with different taxonomic resolutions may be meaningfully merged for the post hoc generation of Southern Ocean time series.
Resumo:
Super-resolution refers to the process of obtaining a high resolution image from one or more low resolution images. In this work, we present a novel method for the super-resolution problem for the limited case, where only one image of low resolution is given as an input. The proposed method is based on statistical learning for inferring the high frequencies regions which helps to distinguish a high resolution image from a low resolution one. These inferences are obtained from the correlation between regions of low and high resolution that come exclusively from the image to be super-resolved, in term of small neighborhoods. The Markov random fields are used as a model to capture the local statistics of high and low resolution data when they are analyzed at different scales and resolutions. Experimental results show the viability of the method.
Resumo:
An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos
Resumo:
In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training set for super resolving a low resolution input image and the Directionlet coefficients at finer scales of its high-resolution image are learned locally from this training set and the inverse Directionlet transform recovers the super-resolved high resolution image. The simulation results showed that the proposed approach outperforms standard interpolation techniques like Cubic spline interpolation as well as standard Wavelet-based learning, both visually and in terms of the mean squared error (mse) values. This method gives good result with aliased images also.
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.
Resumo:
Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.
Resumo:
This article presents a case study of a comparison of an Eulerian chemical transport model (CTM) and Lagrangian chemical model with measurements taken by aircraft. High-resolution Eulerian integrations produce improved point-by-point comparisons between model results and measurements compared to low resolution. The Lagrangian model requires mixing to be introduced in order to model the measurements.
Resumo:
Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.