945 resultados para liquid structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of tris-chloro[2,6-bis(2'-pyridyl)-4-(2'-pyridinium)-1,3,5-triazine]cobalt(II) monohydrate, [Co(C18H13N6)Cl-3]center dot H2O (C2/c (No. 15), a = 7.783(11), b = 22.42(3), c = 11.001(15) angstrom, beta = 90.05(2)degrees), crystallized from the open air reaction of CoCl2 and 2,4,6-tri(2-pyridyl)-1,3,5-triazine in the ionic liquid, N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide is reported. The structure consists of six coordinate cobalt in an octahedral geometry bonded to the tridentate tptz ligand and three chlorines. The non-coordinating pyridyl group in the tptz ligand is protonated (with the protonated nitrogen crystallographically disordered over two possible sites), providing overall charge neutrality for the complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic gels have been synthesized by sol–gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C B 8, after this both properties started to decrease with P/C ratio for P/C[8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm3 g-1 respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol–formaldehyde gels.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel electrode structures for the direct methanol fuel cell (DMFC) based on Ti mesh are reported. A new anode with a hydrophilic structure prepared by coating Pt-Ru catalyst on Ti mesh using thermal decomposition showed a performance comparable to that of the conventional porous carbon-based structure one in DMFC, whilst a cathode with the same structure showed a poor performance. When a porous structure based on Ti mesh pre-coated with carbon was used as the cathode structure, the performance increased significantly to reach that of conventional carbon paper-based cathode. © 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiotensin-converting enzyme (ACE) plays a critical role in rennin-angiotensin system. Recently, natural products isolated from herbal medicines revealed inhibitory effects against ACE which suggested their potential activities in regulating blood pressure. In this study, ACE inhibition (ACEI) of 21 phenylethanoid glycosides and related phenolic compounds were investigated by measuring the production of HA a rapid, sensitive, accurate and specific ultra-performance liquid chromatography-tandem quadrupole mass spectrometry (UPLC-MS/MS) method. The test compounds showed different inhibitory potencies on ACE ranging from 5.29 to 95.01% at 50 mM, and the compounds with ACEI higher than 50% were selected for further IC50 determination. The IC50 values were from 0.53 ± 0.04 to 15.035 ± 0.036 mM. The structure-inhibition relationship were then explored and the result showed that cinnamoyl groups played an essential role in ACEI of phenylethanoid glycosides. Furthermore, the sub-structures of increasing ACEI for phenylethanoid glycosides is more hydroxyls and less steric hindrance to chelate the active site Zn2+ of ACE. In summary, our results suggested that phenylethanoid glycosides are a widely available source of anti-hypertensive natural products and the information provided from structure-inhibition relationship study could aid the design of structurally modified phenylethanoid glycosides as anti-hypertensive drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Master’s Double Degree in Finance from Maastricht University and NOVA – School of Business and Economics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experiments were performed to investigate the evolution of structure and morphology of the network in polymer-stabilised liquid crystals. In situ optical microscopy revealed that the morphology was significantly altered by extraction of the LC host, while scanning electron microscopy showed that the network morphology was also dependent on the polymerisation conditions and closely related to the depletion of monomer, as monitored by high performance liquid chromatography. Transmission electron microscopy allowed observation of internal structure, resolving microstructure on the order of 0. 1 μm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method has been established for observing the internal structure of the network component of polymer-stabilised liquid crystals. In situ photopolymerisation of a mesogenic diacrylate monomer using ultraviolet light leads to a sparse network (∼1 wt%) within a nematic host. Following polymerisation, the host was removed through dissolution in heptane, revealing the network. In order to observe a cross-section through the network, it was embedded in a resin and then sectioned using an ultramicrotome. However, imaging of the network was not possible due to poor contrast. To improve this, several reagents were used for network staining, but only one was successful: bromine. The use of a Melinex-resin composite for sectioning was also found to be advantageous. Imaging of the network using transmission electron microscopy revealed solid “droplets” of width 0.07–0.20 μm, possessing an open, yet homogeneous structure, with no evidence for any large-scale internal structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five different methods were critically examined to characterize the pore structure of the silica monoliths. The mesopore characterization was performed using: a) the classical BJH method of nitrogen sorption data, which showed overestimated values in the mesopore distribution and was improved by using the NLDFT method, b) the ISEC method implementing the PPM and PNM models, which were especially developed for monolithic silicas, that contrary to the particulate supports, demonstrate the two inflection points in the ISEC curve, enabling the calculation of pore connectivity, a measure for the mass transfer kinetics in the mesopore network, c) the mercury porosimetry using a new recommended mercury contact angle values. rnThe results of the characterization of mesopores of monolithic silica columns by the three methods indicated that all methods were useful with respect to the pore size distribution by volume, but only the ISEC method with implemented PPM and PNM models gave the average pore size and distribution based on the number average and the pore connectivity values.rnThe characterization of the flow-through pore was performed by two different methods: a) the mercury porosimetry, which was used not only for average flow-through pore value estimation, but also the assessment of entrapment. It was found that the mass transfer from the flow-through pores to mesopores was not hindered in case of small sized flow-through pores with a narrow distribution, b) the liquid penetration where the average flow-through pore values were obtained via existing equations and improved by the additional methods developed according to Hagen-Poiseuille rules. The result was that not the flow-through pore size influences the column bock pressure, but the surface area to volume ratio of silica skeleton is most decisive. Thus the monolith with lowest ratio values will be the most permeable. rnThe flow-through pore characterization results obtained by mercury porosimetry and liquid permeability were compared with the ones from imaging and image analysis. All named methods enable a reliable characterization of the flow-through pore diameters for the monolithic silica columns, but special care should be taken about the chosen theoretical model.rnThe measured pore characterization parameters were then linked with the mass transfer properties of monolithic silica columns. As indicated by the ISEC results, no restrictions in mass transfer resistance were noticed in mesopores due to their high connectivity. The mercury porosimetry results also gave evidence that no restrictions occur for mass transfer from flow-through pores to mesopores in the small scaled silica monoliths with narrow distribution. rnThe prediction of the optimum regimes of the pore structural parameters for the given target parameters in HPLC separations was performed. It was found that a low mass transfer resistance in the mesopore volume is achieved when the nominal diameter of the number average size distribution of the mesopores is appr. an order of magnitude larger that the molecular radius of the analyte. The effective diffusion coefficient of an analyte molecule in the mesopore volume is strongly dependent on the value of the nominal pore diameter of the number averaged pore size distribution. The mesopore size has to be adapted to the molecular size of the analyte, in particular for peptides and proteins. rnThe study on flow-through pores of silica monoliths demonstrated that the surface to volume of the skeletons ratio and external porosity are decisive for the column efficiency. The latter is independent from the flow-through pore diameter. The flow-through pore characteristics by direct and indirect approaches were assessed and theoretical column efficiency curves were derived. The study showed that next to the surface to volume ratio, the total porosity and its distribution of the flow-through pores and mesopores have a substantial effect on the column plate number, especially as the extent of adsorption increases. The column efficiency is increasing with decreasing flow through pore diameter, decreasing with external porosity, and increasing with total porosity. Though this tendency has a limit due to heterogeneity of the studied monolithic samples. We found that the maximum efficiency of the studied monolithic research columns could be reached at a skeleton diameter of ~ 0.5 µm. Furthermore when the intention is to maximize the column efficiency, more homogeneous monoliths should be prepared.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the early 20th century, Gouy, Chapman, and Stern developed a theory to describe the capacitance and the spatial ion distribution of diluted electrolytes near an electrode. After a century of research, considerable progress has been made in the understanding of the electrolyte/electrode interface. However, its molecular-scale structure and its variation with an applied potential is still under debate. In particular for room-temperature ionic liquids, a new class of solventless electrolytes, the classical theories for the electrical double layer are not applicable. Recently, molecular dynamics simulations and phenomenological theories have attempted to explain the capacitance of the ionic liquid/electrode interface with the molecular-scale structure and dynamics of the ionic liquid near the electrode. rnHowever, experimental evidence is very limited. rnrnIn the presented study, the ion distribution of an ionic liquid near an electrode and its response to applied potentials was examined with sub-molecular resolution. For this purpose, a new sample chamber was constructed, allowing in situ high energy X-ray reflectivity experiments under potential control, as well as impedance spectroscopy measurements. The combination of structural information and electrochmical data provided a comprehensive picture of the electric double layer in ionic liquids. Oscillatory charge density profiles were found, consisting of alternating anion- and cation-enriched layers at both, cathodic and anodic, potentials. This structure was shown to arise from the same ion-ion correlations dominating the liquid bulk structure that were observed as a distinct X-ray diffraction peak. Therefore, existing physically motivated models were refined and verified by comparison with independent measurements. rnrnThe relaxation dynamics of the interfacial structure upon potential variation were studied by time resolved X-ray reflectivity experiments with sub-millisecond resolution. The observed relaxation times during charging/discharging are consistent with the impedance spectroscopy data revealing three processes of vastly different characteristic time-scales. Initially, the ion transport normal to the interface happens on a millisecond-scale. Another 100-millisecond-scale process is associated with molecular reorientation of electrode-adsorbed cations. Further, a minute-scale relaxation was observed, which is tentatively assigned to lateral ordering within the first layer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This letter presents a novel temperature sensor, which consists of an interdigitated comb electrode structure with a micrometric-scale size, nanometric metallic layer, and nematic liquid crystal (NLC) film. This sensor exploits the permittivity dependence of the NLC with temperature and principle of electrical conductivity above the percolation threshold in thin film metallic layers. The latter has been demonstrated to increase the temperature sensitivity considerably. The high impedance input reduces the power dissipation, and the high enough voltage output makes it easy to measure the output signal with high precision. The operation principle and fabrication process as well as the characterization of the temperature sensor are presented. Experimental results show that the device offers a sensitivity of 9 mV/°C and is dependent on the applied voltage. This is six times greater than the same structure without the use of a nanometric layer.