931 resultados para liquid flow monitoring


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called "raceway hysteresis." Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work analyses the unique spatio-temporal alteration of the deposition pattern of evaporating nanoparticle laden droplets resting on a hydrophobic surface through targeted low frequency substrate vibrations. External excitation near the lowest resonant mode (n = 2) of the droplet initially de-pins and then subsequently re-pins the droplet edge creating pseudo-hydrophilicity (low contact angle). Vibration subsequently induces droplet shape oscillations (cyclic elongation and flattening) resulting in strong flow recirculation. This strong radially outward liquid flow augments nanoparticle transport, vaporization, and agglomeration near the pinned edge resulting in much reduced drying time under certain characteristic frequency of oscillations. The resultant deposit exhibits a much flatter structure with sharp, defined peripheral wedge topology as compared to natural drying. Such controlled manipulation of transport enables tailoring of structural and topological morphology of the deposits and offers possible routes towards controlling the formation and drying timescales which are crucial for applications ranging from pharmaceutics to surface patterning. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we have established the evaporation-liquid flow coupling mechanism by which sessile nanofluid droplets on a hydrophobic substrate evaporate and agglomerate to form unique morphological features under controlled external heating. It is well understood that evaporation coupled with internal liquid flow controls particle transport in a spatiotemporal sense. Flow characteristics inside the heated droplet are investigated and found to be driven by the buoyancy effects. Velocity magnitudes are observed to increase by an order at higher temperatures with similar looking flow profiles. The recirculating flow induced particle transport coupled with collision of particles and shear interaction between them leads to the formation of dome shaped viscoelastic shells of different dimensions depending on the surface temperature. These shells undergo sol-gel transition and subsequently undergo buckling instability leading to the formation of daughter cavities. With an increase in the surface temperature, droplets exhibit buckling from multiple sites over a larger sector in the top half of the droplet. Irrespective of the initial nanoparticle concentration and substrate temperature, growth of a daughter cavity (subsequent to buckling) inside the droplet is found to be controlled by the solvent evaporation rate from the droplet periphery and is shown to exhibit a universal trend.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文分析了"和平号"空间站气液两相流实验中获得的部分重力(0.1 g和0.014 g)条件下的流型特征及其相互转换条件,并将其和常重力与微重力两相流研究中较常用的流型转换模型的预测结果进行了比较.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cell-implant adhesive strength is important for prostheses. In this paper, an investigation is described into the adhesion of bovine chondrocytes to Ti6Al4V-based substrates with different surface roughnesses and compositions. Cells were cultured for 2 or 5 days, to promote adhesion. The ease of cell removal was characterised, using both biochemical (trypsin) and mechanical (accelerated buoyancy and liquid flow) methods. Computational fluid dynamics (CFD) modelling has been used to estimate the shear forces applied to the cells by the liquid flow. A comparison is presented between the ease of cell detachment indicated using these methods, for the three surfaces investigated. © 2008 Materials Research Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.

Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.

Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.

The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Aerosol delivery holds potential to release surfactant or perfluorocarbon (PFC) to the lungs of neonates with respiratory distress syndrome with minimal airway manipulation. Nevertheless, lung deposition in neonates tends to be very low due to extremely low lung volumes, narrow airways and high respiratory rates. In the present study, the feasibility of enhancing lung deposition by intracorporeal delivery of aerosols was investigated using a physical model of neonatal conducting airways. Methods: The main characteristics of the surfactant and PFC aerosols produced by a nebulization system, including the distal air pressure and air flow rate, liquid flow rate and mass median aerodynamic diameter (MMAD), were measured at different driving pressures (4-7 bar). Then, a three-dimensional model of the upper conducting airways of a neonate was manufactured by rapid prototyping and a deposition study was conducted. Results: The nebulization system produced relatively large amounts of aerosol ranging between 0.3 +/- 0.0 ml/min for surfactant at a driving pressure of 4 bar, and 2.0 +/- 0.1 ml/min for distilled water (H(2)Od) at 6 bar, with MMADs between 2.61 +/- 0.1 mu m for PFD at 7 bar and 10.18 +/- 0.4 mu m for FC-75 at 6 bar. The deposition study showed that for surfactant and H(2)Od aerosols, the highest percentage of the aerosolized mass (similar to 65%) was collected beyond the third generation of branching in the airway model. The use of this delivery system in combination with continuous positive airway pressure set at 5 cmH(2)O only increased total airway pressure by 1.59 cmH(2)O at the highest driving pressure (7 bar). Conclusion: This aerosol generating system has the potential to deliver relatively large amounts of surfactant and PFC beyond the third generation of branching in a neonatal airway model with minimal alteration of pre-set respiratory support.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

根据数字液压驱动单元的运行原理,分析了在空载与加载情况下该数字驱动单元的内部液体流动状态,并以这一流动状态原理为依据,改进设计了传统的液控单向阀。数字液压驱动单元样机及试验结果表明:该数字液压驱动单元与应用传统液控单向阀体的驱动单元相比,具有更加紧凑的体积、更高的响应速度及运行可靠性和显著的节能效果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peron, N., Cox, S.J., Hutzler, S. and Weaire, D. (2007) Steady drainage in emulsions: corrections for surface Plateau borders and a model for high aqueous volume fraction. The European Physical Journal E - Soft Matter. 22: 341-351. Sponsorship: This research was supported by the European Space Agency (14914/02/NL/SH, 14308/00/NL/SG) (AO-99-031) CCN 002 MAP Project AO-99-075) and Science Foundation Ireland (RFP 05/RFP/PHY0016). SJC acknowledges support from EPSRC (EP/D071127/1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hydrodynamic characterization of an industrially used gas-liquid contacting microchannel. device is discussed, viz. the micro bubble column of IMM. Furthermore, similar characterization of a gas-liquid flow microchip of TU/e, with two tailored mixer designs, is used to solve fundamental issues on hydrodynamics, and therefore, to achieve further design and operating optimization of that chip and the IMM device. Flow pattern maps are presented in a dimensionless fashion for further predictions on new fluidic systems for optimum single-channel multiphase operation. Bubble formation was investigated in the two types of mixers and pinch-off and hydrodynamic decay mechanisms are observed. The impact of these mechanisms on bubble size, bubble size distributions, and on the corresponding flow patterns, i.e., the type of mixer design, can be decisive for the flow pattern map and thus, may be used to alter flow pattern maps. The bubble sizes and their distribution were improved for the tailored designs, i.e., smaller and more regular bubbles were generated. Finally, the impact of multi-channel distribution for gas and liquid flow is demonstrated. Intermediate flow patterns such as slug-annular flow, also found for single-phase operation, and the simultaneous coexistence of flow regimes are presented, with the latter providing evidence of flow maldistribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The final contents of total and individual trans-fatty acids of sunflower oil, produced during the deacidification step of physical refining were obtained using a computational simulation program that considered cis-trans isomerization reaction features for oleic, linoleic, and linolenic acids attached to the glycerol part of triacylglycerols. The impact of process variables, such as temperature and liquid flow rate, and of equipment configuration parameters, such as liquid height, diameter, and number of stages, that influence the retention time of the oil in the equipment was analyzed using the response-surface methodology (RSM). The computational simulation and the RSM results were used in two different optimization methods, aiming to minimize final levels of total and individual trans-fatty acids (trans-FA), while keeping neutral oil loss and final oil acidity at low values. The main goal of this work was to indicate that computational simulation, based on a careful modeling of the reaction system, combined with optimization could be an important tool for indicating better processing conditions in industrial physical refining plants of vegetable oils, concerning trans-FA formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports the effectiveness of the photocatalysis TiO2 in degrading Lanasol Blue CE. A flat-plate reactor (FPR) with a reactor area of 0.37 m2 and ultraviolet (UV) light source of six 36 W blacklight lamps was used in the study. Operating variables including dosage of the photocatalyst, flow rates through the FPR, UV intensity, and tilted angle of the reactor were investigated to degrade Lanasol Blue CE. Results showed that the photocatalytic process can efficiently remove the color in textile dyeing effluent. The degradation process was approximated using first-order kinetics. The photocatalytic apparent reaction rate increased with the increasing UV intensity received by the photocatalyst TiO2 in slurry. The liquid flow rate and tilted angle influenced the film thickness. The apparent reaction rate constant was mainly determined by the liquid film thickness, UV intensity, and the dosage of the photocatalyst. The findings of this research can be utilized as preliminary input for potential solar photocatalytic applications on color removal from dye solutions.