74 resultados para liquefaction
Resumo:
"Prepared for Office of Coal Research, Department of Interior."
Resumo:
Prepared for the Office of Coal Research, Dept. of the Interior...by the Pittsburg & Midway Coal Mining Co., Kansas City, Mo.
Resumo:
"August 1978."
Resumo:
Vol.2 has confidential material and is not available for circulation.
Resumo:
"Contract no. 14-32-0001-1234."
Resumo:
Mode of access: Internet.
Resumo:
La Sequenza Sismica Emiliana del 2012 ha colpito la zona compresa tra Mirandola e Ferrara con notevoli manifestazioni cosismiche e post-sismiche secondarie, soprattutto legate al fenomeno della liquefazione delle sabbie e alla formazione di fratturazioni superficiali del terreno. A fronte del fatto che la deformazione principale, osservata tramite tecniche di remote-sensing, ha permesso di individuare la posizione della struttura generatrice, ci si è interrogati sul rapporto tra strutture profonde e manifestazioni secondarie superficiali. In questa tesi è stato svolto un lavoro di integrazione di dati a varia scala, dalla superficie al sottosuolo, fino profondità di alcuni chilometri, per analizzare il legame tra le strutture geologiche che hanno generato il sisma e gli effetti superficiali percepiti dagli osservatori. Questo, non solo in riferimento allo specifico del sisma emiliano del 2012, ma al fine di trarre utili informazioni in una prospettiva storica e geologica sugli effetti di un terremoto “tipico”, in una regione dove le strutture generatrici non affiorano in superficie. Gli elementi analizzati comprendono nuove acquisizioni e rielaborazioni di dati pregressi, e includono cartografie geomorfologiche, telerilevamenti, profili sismici a riflessione superficiale e profonda, stratigrafie e informazioni sulla caratterizzazione dell’area rispetto al rischio sismico. Parte dei dati di nuova acquisizione è il risultato dello sviluppo e la sperimentazione di metodologie innovative di prospezione sismica in corsi e specchi d’acqua continentali, che sono state utilizzate con successo lungo il Cavo Napoleonico, un canale artificiale che taglia ortogonalmente la zona di massima deformazione del sisma del 20 Maggio. Lo sviluppo della nuova metodologia di indagine geofisica, applicata ad un caso concreto, ha permesso di migliorare le tecniche di imaging del sottosuolo, oltre a segnalare nuove evidenze co-sismiche che rimanevano nascoste sotto le acque del canale, e a fornire elementi utili alla stratigrafia del terreno. Il confronto tra dati geofisici e dati geomorfologici ha permesso di cartografare con maggiore dettaglio i corpi e le forme sedimentarie superficiali legati alla divagazione fluviale dall’VIII sec a.C.. I dati geofisici, superficiali e profondi, hanno evidenziato il legame tra le strutture sismogeniche e le manifestazioni superficiali seguite al sisma emiliano. L’integrazione dei dati disponibili, sia nuovi che da letteratura, ha evidenziato il rapporto tra strutture profonde e sedimentazione, e ha permesso di calcolare i tassi geologici di sollevamento della struttura generatrice del sisma del 20 Maggio. I risultati di questo lavoro hanno implicazioni in vari ambiti, tra i quali la valutazione del rischio sismico e la microzonazione sismica, basata su una caratterizzazione geomorfologico-geologico-geofisica dettagliata dei primi 20 metri al di sotto della superficie topografica. Il sisma emiliano del 2012 ha infatti permesso di riconoscere l’importanza del substrato per lo sviluppo di fenomeni co- e post-sismici secondari, in un territorio fortemente eterogeneo come la Pianura Padana.
Resumo:
Since the oil crisis of 1973 considerable interest has been shown in the production of liquid fuels from alternative sources. In particular processes utilizing coal as the feedstock have received considerable interest. These processes can be divided into direct and indirect liquefaction and pyrolysis. This thesis describes the modelling of indirect coal liquefaction processes for the purpose of performing technical and economic assessment of the production of liquid fuels from coal and lignite, using a variety of gasification and synthesis gas liquefaction technologies. The technologies were modeled on a 'step model' basis where a step is defined as a combination of individual unit operations which together perform a significant function on the process streams, such as a methanol synthesis step or a gasification and physical gas cleaning step. Sample results of the modelling, covering a wide range of gasifiers, liquid synthesis processes and products are presented in this thesis. Due to the large number of combinations of gasifier, liquid synthesis processes, products and economic sensitivity cases, a complete set of results is impractical to present in a single publication. The main results show that methanol is the cheapest fuel to produce from coal followed by fuel alcohol, diesel from the Shell Middle Distillate Synthesis process,gasoline from Mobil Methanol to Gasoline (MTG) process, diesel from the Mobil Methanol Olefins Gasoline Diesel (MOGD) process and finally gasoline from the same process. Some variation in production costs of all the products was shown depending on type of gasifier chosen and feedstock.
Resumo:
This review covers the production and utilisation of liquids from the thermal processing of biomass and related materials to substitute for synthetic phenol and formaldehyde in phenol formaldehyde resins. These resins are primarily employed in the manufacture of wood panels such as plywood, MDF, particle-board and OSB. The most important thermal conversion methods for this purpose are fast pyrolysis and vacuum pyrolysis, pressure liquefaction and phenolysis. Many feedstocks have been tested for their suitability as sources of phenolics including hard and softwoods, bark and residual lignins. Resins have been prepared utilising either the whole liquid product, or a phenolics enriched fraction obtained after fractional condensation or further processing, such as solvent extraction. None of the phenolics production and fractionation techniques covered in this review are believed to allow substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum derived phenol. This survey shows that considerable progress has been made towards reaching the goal of a price competitive renewable resin, but that further research is required to meet the twin challenges of low renewable resin cost and satisfactory quality requirements. Particular areas of concern are wood panel press times, variability of renewable resin properties, odour, lack of reactive sites compared to phenol and potential for increased emissions of volatile organic compounds.
Resumo:
Tailings dams are structures that aims to retain the solid waste and water from mining processes. Its analysis and planning begins with searching of location for deployment, step on which to bind all kinds of variables that directly or indirectly influence the work, such as geological, hydrological, tectonic, topographic, geotechnical, environmental, social characteristics, evaluation security risks, among others. Thus, this paper aims to present a study on the most appropriate and secure type of busbar to design a layout structure of iron ore tailings, taking into account all the above mentioned variables. The case study involves the assessment of sites for location of dams of tailings disposal beneficiation of iron mine to be built in Bonito, in the municipality of Jucurutu in Seridó Potiguar. For site selection among alternatives, various aspects of the current state of the art were considered, one that causes the least environmental impact, low cost investment, adding value to the product and especially the safety of the implanted structure mitigates the concern about induced earthquakes as a result of liquefaction wastes somatized by dams in the region, as the tilling of Mina Bonito is located practically in the hydraulic basin dam Armando Ribeiro in environmental protection (APA). The methodology compares induced by dams in the semiarid region with the characteristics of the waste disposal and sterile seismicity, taking into account the enhancement of liquefaction by the action of seismicity in the Mina Bonito region. With the fulcrum in the methodology, we indicated the best busbar type for disposal of tailings from iron ore or combination of them, to be designed and built in semiarid particularly for Mina Bonito. Also presents a number of possible uses for the tailings and in engineering activities, which may cause processing to the common good.
Resumo:
Hydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.
Resumo:
There is no agreement between experimental researchers whether the point where a granular material responds with a large change of stresses, strains or excess pore water pressure given a prescribed small input of some of the same variables defines a straight line or a curve in the stress space. This line, known as the instability line, may also vary in shape and position if the onset of instability is measured from drained or undrained triaxial tests. Failure of granular materials, which might be preceded by the onset of instability, is a subject that the geotechnical engineers have to deal with in the daily practice, and generally speaking it is associated to different phenomena observed not only in laboratory tests but also in the field. Examples of this are the liquefaction of loose sands subjected to undrained loading conditions and the diffuse instability under drained loading conditions. This research presents results of DEM simulations of undrained triaxial tests with the aim of studying the influence of stress history and relative density on the onset of instability in granular materials. Micro-mechanical analysis including the evolution of coordination numbers and fabric tensors is performed aiming to gain further insight on the particle-scale interactions that underlie the occurrence of this instability. In addition to provide a greater understanding, the results presented here may be useful as input for macro-scale constitutive models that enable the prediction of the onset of instability in boundary value problems.
Resumo:
The aim of this study was to compare two processes for the extraction of R-phycoerythrin (R-PE) from the red seaweed Grateloupia turuturu: ultrasound-assisted extraction (UAE) and ultrasound-assisted enzymatic hydrolysis (UAEH). Process efficiencies were both evaluated by the yield of R-PE extraction and by the level of liquefaction. Experiments were conducted at 40 and 22 °C, for 6 h, using an enzymatic cocktail and an original ultrasonic flow-through reactor. R-PE appeared very sensitive to temperature, thus 22 °C is strongly recommended for its extraction by UAEH or UAE. However, the higher processing temperature (40 °C) clearly increased the extraction of water-soluble compounds (up to 91% of liquefaction). These two new processes are thus promising alternatives for the extraction of water-soluble components including R-PE, from wet seaweeds, with extraction yields at least similar to conventional solid–liquid extraction.
Resumo:
Purpose: To formulate stable water in oil (W/O) emulsion containing hydroalcoholic crude extract of Ziziphus mauritiana leaves for skin rejuvenation. Methods: Placebo (base) without any plant extract and formulation with 4 % Ziziphus mauritiana extract were prepared by mixing. Samples of the emulsions were subjected to varying storage conditions, i.e., 8, 25, 40 oC and 40 oC + 75 % relative humidity for a period of 4 weeks to predict their stability. During this period, stability parameters, including liquefaction, phase separation, color, electrical conductivity, centrifugation and pH were monitored at specified time intervals. Skin rejuvenation was evaluated using 13 healthy human volunteers over a period of 8 weeks. During this period, various skin parameters such as erythema, melanin level, moisture content, elasticity and sebum content of the skin were evaluated at specified intervals. Results: Both the active formulation and placebo were stable in terms of liquifaction, phase separation and color at all the storage conditions of temperature and humidity. Active formulation showed statistically significant (p < 0.05) improvement in skin melanin as well as in skin moisture and sebum levels, whereas these properties were reduced or even absent in the placebo formulation (p > 0.05). Both active and placebo formulations changed skin elasticity and erythema significantly (p < 0.05). Conclusion: It is evident from the findings that the leaf extract of Ziziphus mauritiana possesses antiaging properties as well as exert skin lightening, moisturizing and viscoelastic effects on human skin.