952 resultados para linear phase response
Resumo:
In recent years modern numerical methods have been employed in the design of Wave Energy Converters (WECs), however the high computational costs associated with their use makes it prohibitive to undertake simulations involving statistically relevant numbers of wave cycles. Experimental tests in wave tanks could also be performed more efficiently and economically if short time traces, consisting of only a few wave cycles, could be used to evaluate the hydrodynamic characteristics of a particular device or design modification. Ideally, accurate estimations of device performance could be made utilizing results obtained from investigations with a relatively small number of wave cycles. However the difficulty here is that many WECs, such as the Oscillating Wave Surge Converter (OWSC), exhibit significant non-linearity in their response. Thus it is challenging to make accurate predictions of annual energy yield for a given spectral sea state using short duration realisations of that sea. This is because the non-linear device response to particular phase couplings of sinusoidal components within those time traces might influence the estimate of mean power capture obtained. As a result it is generally accepted that the most appropriate estimate of mean power capture for a sea state be obtained over many hundreds (or thousands) of wave cycles. This ensures that the potential influence of phase locking is negligible in comparison to the predictions made. In this paper, potential methods of providing reasonable estimates of relative variations in device performance using short duration sea states are introduced. The aim of the work is to establish the shortness of sea state required to provide statistically significant estimations of the mean power capture of a particular type of Wave Energy Converter. The results show that carefully selected wave traces can be used to reliably assess variations in power output due to changes in the hydrodynamic design or wave climate.
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.
Resumo:
Background Interventions to promote physical activity (PA) in children attending family child care homes (FCCHs) require valid, yet practical, measurement tools. The aim of this study was to assess the validity of two proxy report instruments designed to measure PA in children attending FCCHs. Methods A sample of 37 FCCH providers completed the Burdette parent proxy report, modified for the family child care setting for 107 children 3.4±1.2 years of age. A second sample of 42 FCCH providers completed the Harro parent and teacher proxy report, modified for the family child care setting, for 131 children 3.8±1.3 years of age. Both proxy reports were assessed for validity using accelerometry as a criterion measure. Results Significant positive correlations were observed between provider-reported PA scores from the modified Burdette proxy report and objectively measured total PA (r=0.30; p<0.01) and moderate-to-vigorous PA (MVPA; r=0.34; p<0.01). Across levels of provider-reported PA, both total PA and MVPA increased significantly in a linear dose-response fashion. The modified Harro proxy report was not associated with objectively measured PA. Conclusion Proxy PA reports completed by family child care providers may be a valid assessment option in studies where more burdensome objective measures are not feasible.
Resumo:
Models of the mammalian clock have traditionally been based around two feedback loops-the self-repression of Per/Cry by interfering with activation by BMAL/CLOCK, and the repression of Bmal/Clock by the REV-ERB proteins. Recent experimental evidence suggests that the D-box, a transcription factor binding site associated with daytime expression, plays a larger role in clock function than has previously been understood. We present a simplified clock model that highlights the role of the D-box and illustrate an approach for finding maximum-entropy ensembles of model parameters, given experimentally imposed constraints. Parameter variability can be mitigated using prior probability distributions derived from genome-wide studies of cellular kinetics. Our model reproduces predictions concerning the dual regulation of Cry1 by the D-box and Rev-ErbA/ROR response element (RRE) promoter elements and allows for ensemble-based predictions of phase response curves (PRCs). Nonphotic signals such as Neuropeptide Y (NPY) may act by promoting Cry1 expression, whereas photic signals likely act by stimulating expression from the E/E' box. Ensemble generation with parameter probability restraints reveals more about a model's behavior than a single optimal parameter set.
Resumo:
Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.
Resumo:
The root-lesion nematode, Pratylenchus thornei, can reduce wheat yields by >50%. Although this nematode has a broad host range, crop rotation can be an effective tool for its management if the host status of crops and cultivars is known. The summer crops grown in the northern grain region of Australia are poorly characterised for their resistance to P. thornei and their role in crop sequencing to improve wheat yields. In a 4-year field experiment, we prepared plots with high or low populations of P. thornei by growing susceptible wheat or partially resistant canaryseed (Phalaris canariensis); after an 11-month, weed-free fallow, several cultivars of eight summer crops were grown. Following another 15-month, weed-free fallow, P. thornei-intolerant wheat cv. Strzelecki was grown. Populations of P. thornei were determined to 150 cm soil depth throughout the experiment. When two partially resistant crops were grown in succession, e.g. canaryseed followed by panicum (Setaria italica), P. thornei populations were <739/kg soil and subsequent wheat yields were 3245 kg/ha. In contrast, after two susceptible crops, e.g. wheat followed by soybean, P. thornei populations were 10 850/kg soil and subsequent wheat yields were just 1383 kg/ha. Regression analysis showed a linear, negative response of wheat biomass and grain yield with increasing P. thornei populations and a predicted loss of 77% for biomass and 62% for grain yield. The best predictor of wheat yield loss was P. thornei populations at 0-90 cm soil depth. Crop rotation can be used to reduce P. thornei populations and increase wheat yield, with greatest gains being made following two partially resistant crops grown sequentially.
Resumo:
In this article, we use some spectral properties of polynomials presented in 1] and map an auto-correlation sequence to a set of Line Spectral Frequencies(LSFs) and reflection coefficients. This novel characterization of an auto-correlation sequence is used to obtain a lattice structure of a Linear-Phase(LP) FIR filter.
Resumo:
An alternative antibody-free strategy for the rapid electrochemical detection of cardiac myoglobin has been demonstrated here using hydrothermally synthesized TiO2 nanotubes (Ti-NT). The denaturant induced unfolding of myoglobin led to easy access of the deeply buried electroactive heme center and thus the efficient reversible electron transfer from protein to electrode surface. The sensing performance of the Ti-NT modified electrodes were compared vis a vis commercially available titania and GCEs. The tubular morphology of the Ti-NT led to facile transfer of electrons to the electrode surface, which eventually provided a linear current response (obtained from cyclic voltammetry) over a wide range of Mb concentration. The sensitivity of the Ti-NT based sensor was remarkable and was equal to 18 mu A mg(-1) ml (detection limit = 50 nM). This coupled with the rapid analysis time of a few tens of minutes (compared to a few days for ELISA) demonstrates its potential usefulness for the early detection of acute myocardial infarction (AMI).
Resumo:
Electrodeposition of Au on poly (3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable 3-D urchin-like morphology. Au-PEDOT/C electrode exhibits higher surface area, greater catalytic activity, higher sensitivity and lower detection limit for glucose analysis in an alkaline medium than Au/C electrode. Au-PEDOT/C electrode exhibits a linear current response in glucose concentration ranging up to 10 mu M with sensitivity of 515 mu A cm(-2) mu M-1 (on the basis of geometric area) and a low detection limit of 0.03 mu M with signal to noise ratio of 3. Thus, the PEDOT under-layer improves the property of Au for glucose analysis. (c) 2013 The Electrochemical Society.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.
Resumo:
The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.
Resumo:
以高纯α-Al2O3和石墨为原料,采用温梯法生长了α-Al2O3:C晶体,使用RisΦTL/OSL-DA-15型热释光和光释光仪研究了其热释光和光释光特性.α-Al2O3:C晶体在462K附近有单一热释光峰,发射波长位于410nm.随着辐照剂量的增加,热释光强度逐渐增强,462K的热释光特征峰位置保持不变.α-Al2O3:C晶体的光释光衰减曲线由快衰减和慢衰减两个部分组成,随着辐照剂量的增加,快衰减部分衰减速率变化不大,而慢衰减部分衰减速率加快.在5×10-6—10Gy剂量范围内,α-Al2O3:C晶体的热释光剂量响应呈现良好的线性关系,30Gy时达到饱和;光释光剂量响应在5×10-6—60Gy剂量范围内呈现良好的线性关系,100Gy时达到饱和.与热释光相比,光释光剂量响应具有更高的灵敏度和更宽的线性剂量响应范围.
Resumo:
This paper investigates the circumstances under which high peak acceleration can occur in the internal parts of a system when subjected to impulsive driving on the outside. Motivating examples include the design of packaging for transportation of fragile items. The system is modelled in an idealised form using two beams coupled with point connections. A Rayleigh-Ritz model of such coupled beams was validated against measurements on a particular beam system, then the model was used to explore the acceleration response to impulsive driving in the time, frequency and spatial domains. This study is restricted to linear vibration response and additional mechanisms for high internal acceleration due to nonlinear effects such as internal impacts are not considered. Using Monte Carlo simulation in which the indirectly driven beam was perturbed by randomly placed point masses a wide range of system behaviour was explored. This facilitates identification of vulnerable configurations that can lead to high internal acceleration. The results from the study indicate the possibility of curve veering influencing the peak acceleration amplification. The possibility of veering within an ensemble was found to be dependent on the relative coupling strength of the modes. Understanding of the mechanism may help to avoid vulnerable cases, either by design or by preparatory vibration testing. © 2013 Elsevier Ltd.