967 resultados para light-activated heterotrophic growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar a influência da variação da intensidade de luz, para uma mesma exposição radiante, na resistência à flexão, na microdureza e na resistência à tração diametral de uma resina convencional e de uma resina de baixa contração. Para a confecção dos corpos de prova foram utilizadas as resinas Filtek Z250 (3M ESPE) e Filtek P90 LS (3M ESPE) fotoativadas por meio dos seguintes protocolos: Convencional (400mW/cm por 60 s), Média intensidade (700mW/cm por 34 s) e Alta intensidade (950mW/cm por 26 s). Todos os corpos de prova receberam a mesma exposição radiante de 24J/cm. A resistência à flexão foi avaliada por meio do ensaio de flexão três pontos. Para este ensaio foram confeccionados trinta corpos de prova de cada material (n=10) com dimensões de 10mm x 2mm x 1mm. A avaliação da microdureza Knoop foi obtida a partir de seis discos de cada resina com 5mm de diâmetro por 2mm de espessura (n=2), sendo realizadas cinco indentações em cada espécime. Trinta corpos de prova cílindricos de cada compósito (n=10) com 3mm de diâmetro por 6mm de altura foram confeccionados para a realização do teste de tração diametral. A análise estatística dos resultados obtidos foi realizada por meio do teste de análise de variância (ANOVA) e do teste de múltiplas comparações de Tukey (p < 0.05). A resistência à flexão da resina P90 não foi influenciada de forma significativa pelas diferentes formas de ativação, enquanto a Z250 obteve resultados significantemente maiores para o protocolo de alta intensidade em relação ao convencional. Em todas as intensidades de luz, os resultados da Z250 foram significativamente maiores que os da P90. A microdureza da resina P90 foi estatisticamente maior para o grupo de média intensidade em relação aos outros, já a Z250 não obteve resultados com diferença estatística em relação às formas de ativação. Para a mesma irradiância, a Z250 obteve maiores valores de microdureza do que a P90, com exceção para o protocolo de média intensidade em que não houve diferença estatística entre os materiais. Os valores de resistência à tração não foram influenciados de forma significativa nem pelas diferentes intensidades de luz, nem pelos materiais utilizados. A influência da variação da intensidade de luz depende do tipo de compósito utilizado e da propriedade mecânica avaliada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As cianobactérias Microcystis aeruginosa e Planktothrix agardhii são espécies formadoras de florações comuns em ecossistemas aquáticos eutrofizados. Nestes ambientes, a disponibilidade de luz é um dos fatores determinantes para o desenvolvimento e estruturação da comunidade fitoplanctônica. O presente estudo teve como objetivo investigar o efeito da luz na fisiologia de cepas de cianobactérias (M. aeruginosa e P. agardhii), avaliando o crescimento, a variabilidade inter e intra-específica e a competição por luz. Para tanto foram realizados cultivos estanques em diferentes intensidades luminosas (10, 40, 60, 100 e 500 mol m-2 s-1) e calculadas as taxas de crescimento e os rendimentos máximos das culturas. O requerimento mínimo de luz de cada cepa foi determinado em experimentos com monoculturas em sistemas de cultivo contínuo (quimiostatos) sob condições de limitação de luz. A competição por luz foi avaliada através de experimentos com biculturas em quimiostatos. Foi observada variabilidade intra e inter-específica das cepas, nas diferentes intensidades luminosas testadas. Em 500 μmol m-2 s-1, as cepas de M. aeruginosa obtiveram maior biomassa do que P. agardhii, corroborando a maior sensibilidade de P. agardhii luz. Embora com rendimento máximo menor, P. agardhii cresceu em intensidades luminosas consideradas elevadas para a espécie, 100 e 500 μmol m-2 s-1. Estes resultados evidenciam a capacidade de P. agardhii ocorrer em ambientes com grandes amplitudes de luminosidade. Na intensidade de 10 μmol m-2 s-1, M. aeruginosa e P. agardhii apresentaram crescimento semelhante, demonstrando a habilidade das duas espécies em crescer com pouca luz. Nas monoculturas em quimiostato, sob condições de limitação de luz, as cepas de M. aeruginosa atingiram maior biomassa durante o equilíbrio (steady-state) do que P. agadhii, refletindo uma capacidade suporte mais elevada, enquanto que os valores de requerimento mínimo de luz foram semelhantes entre as duas espécies. Ao competirem, M. aeruginosa superou P. agardhii imediatamente após o início do experimento. Esse rápido crescimento resultou na dominância de M. aeruginosa em todos os pares de cepas testados e, em dois casos, ocorreu exclusão competitiva de P. agardhii. Quando não ocorreu exclusão, P. agardhii conseguiu manter-se no sistema com uma baixa biomassa (ca.15%). Estes resultados ajudam a entender a co-ocorrência destas espécies no ambiente e a dominância de M. aeruginosa mesmo em condições de baixa luminosidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bleached mutants of Euglena gracilis were obtained by treatment with ofloxacin (Ofl) and streptomycin (Sm) respectively. As shown by electron microscopy, the residual plastids contain prothylakoids in an Ofl mutant, and the highly developed and tightly stacked membranous structure found in cells of two Sm, mutants. Nine genes of the plastid genome were examined with PCR, showing that ribosomal protein genes and most other plastid genes were lost in all but one Sm mutant. Using differential display and RT-PCR, it was shown that chloroplast degeneration could cause changes in transcription of certain nucleus-encoded genes during heterotrophic growth in darkness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant Arabidopsis thaliana, the red- and far-red light-sensing phytochromes (phys) are arguably the best studied, but the earliest events in the phy signaling pathway remain poorly understood. One of the earliest phy signaling events is the translocation of photoactivated phys from the cytoplasm to the nucleus, where they localize to subnuclear foci termed photobodies; in continuous light, photobody localization correlates closely with the light-dependent inhibition of embryonic stem growth. Despite a growing body of evidence supporting the biological significance of photobodies in light signaling, photobodies have also been shown to be dispensable for seedling growth inhibition in continuous light, so their physiological importance remains controversial; additionally, the molecular components that are required for phy localization to photobodies are largely unknown. The overall goal of my dissertation research was to gain insight into the early steps of phy signaling by further defining the role of photobodies in this process and identifying additional intragenic and extragenic requirements for phy localization to photobodies.

Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.

Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (PBG), and one in which it cannot (NGB). Despite these differences in photobody morphology, both lines are capable of transducing light signals and inhibiting seedling growth in continuous light. After the transition from red light to darkness, the PBG line was able to repress seedling growth, as well as the accumulation of the growth-promoting, light-labile transcription factor PHYTOCHROME INTERACTING FACTOR 3 (PIF3), for eighteen hours, and this correlated perfectly with the presence of photobodies. Reducing the amount of active phy by either reducing the light intensity or adding a phy-inactivating far-red pulse prior to darkness led to faster accumulation of PIF3 and earlier seedling growth. In contrast, the NGB line accumulated PIF3 even in the light, and seedling growth was only repressed for six hours; this behavior was similar in NGB regardless of the light treatment. These results suggest that photobodies are required for the degradation of PIF3 and for the prolonged stabilization of active phy in darkness. They also support the hypothesis that photobody localization of phys could serve as an instructive cue during the light-to-dark transition, thereby fine-tuning light-dependent responses in darkness.

In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR); hmr mutants do not form large photobodies, and they are tall and albino in the light. To identify other components in the HMR-mediated branch of the phy signaling pathway, I performed a forward genetic screen for suppressors of a weak hmr allele. Surprisingly, the first three mutants isolated from the screen were alleles of the same novel gene, SON OF HEMERA (SOH). The soh mutations rescue all of the phenotypes associated with the weak hmr allele, and they do so in an allele-specific manner, suggesting a direct interaction between SOH and HMR. Null soh alleles, which were isolated in an independent, tall, albino screen, are defective in photobody localization, demonstrating that SOH is an extragenic regulator of phy localization to photobodies that works in the same genetic pathway as HMR.

In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene, SON OF HEMERA, whose product is necessary for phy localization to photobodies in the light, thereby isolating a new extragenic determinant of photobody localization. These results are among the first to focus exclusively on one of the earliest cellular responses to light - photobody localization of phys - and they promise to open up new avenues into the study of a poorly understood facet of the phy signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models offer the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board". maritimeEXODUS-winner of the BCS, CITIS and RINA awards - is such a model. Features such as the ability to realistically simulate human response to fire, the capability to model human performance in heeled orientations, a virtual reality environment that produces realistic visualisations of the modelled scenarios and with an integrated abandonment model, make maritimeEXODUS a truly unique tool for assessing the evacuation capabilities of all types of vessels under a variety of conditions. This paper describes the maritimeEXODUS model, the SHEBA facility from which data concerning passenger/crew performance in conditions of heel is derived and an example application demonstrating the models use in performing an evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based, but exceeding the requirements of MSC circular 1033.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire sas well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritmeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033. The fire simulations include the action of a water mist system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we describe a new trait-based model for cellular resource allocation that we use to investigate the relative importance of different drivers for small cell size in phytoplankton. Using the model, we show that increased investment in nonscalable structural components with decreasing cell size leads to a trade-off between cell size, nutrient and light affinity, and growth rate. Within the most extreme nutrient-limited, stratified environments, resource competition theory then predicts a trend toward larger minimum cell size with increasing depth. We demonstrate that this explains observed trends using a marine ecosystem model that represents selection and adaptation of a diverse community defined by traits for cell size and subcellular resource allocation. This framework for linking cellular physiology to environmental selection can be used to investigate the adaptive response of the marine microbial community to environmental conditions and the adaptive value of variations in cellular physiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.0 ± 0.42% relative to the control in intense light conditions and 91.7± 5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Phosphoinositide-dependent protein kinase-1 (PDK1) plays a central role in signal transduction pathways that activate phosphoinositide 3-kinase. Despite its key role as an upstream activator of enzymes such as protein kinase B and p70 ribosomal protein S6 kinase, the regulatory mechanisms controlling PDK1 activity are poorly understood. PDK1 has been reported to be constitutively active in resting cells and not further activated by growth factor stimulation (Casamayor, A., Morrice, N. A., and Alessi, D. R. (1999) Biochem. J. 342, 287-292). Here, we report that PDK1 becomes tyrosine-phosphorylated and translocates to the plasma membrane in response to pervanadate and insulin. Following pervanadate treatment, PDK1 kinase activity increased 1.5- to 3-fold whereas the activity of PDK1 associated with the plasma membrane increased similar to6-fold. The activity of PDK1 localized to the plasma membrane was also increased by insulin treatment. Three tyrosine phosphorylation sites of PDK1 (Tyr-9 and Tyr-373/376) were identified using in vivo labeling and mass spectrometry. Using site-directed mutants, we show that, although phosphorylation on Tyr-373/376 is important for PDK1 activity, phosphorylation on Tyr-9 has no effect on the activity of the kinase. Both of these residues can be phosphorylated by v-Src tyrosine kinase in vitro, and co-expression of v-Src leads to tyrosine phosphorylation and activation of PDK1. Thus, these data suggest that PDK1 activity is regulated by reversible phosphorylation, possibly by a member of the Src kinase family.