959 resultados para ligand-receptor interaction


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autocrine ligands are important regulators of many normal tissues and have been implicated in a number of disease states, including cancer. However, because by definition autocrine ligands are synthesized, secreted, and bound to cell receptors within an intrinsically self-contained “loop,” standard pharmacological approaches cannot be used to investigate relationships between ligand/receptor binding and consequent cellular responses. We demonstrate here a new approach for measurement of autocrine ligand binding to cells, using a microphysiometer assay originally developed for investigating cell responses to exogenous ligands. This technique permits quantitative measurements of autocrine responses on the time scale of receptor binding and internalization, thus allowing investigation of the role of receptor trafficking and dynamics in cellular responses. We used this technique to investigate autocrine signaling through the epidermal growth factor receptor by transforming growth factor alpha (TGFα) and found that anti-receptor antibodies are far more effective than anti-ligand antibodies in inhibiting autocrine signaling. This result indicates that autocrine-based signals can operate in a spatially restricted, local manner and thus provide cells with information on their local microenvironment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of poliovirus with its cell receptor initiates conformational changes that lead to uncoating of the viral RNA. Three types of genetic analyses have been used to study the poliovirus-receptor interaction: (i) mutagenesis of the poliovirus receptor (PVR), (ii) selection of viral mutants resistant to neutralization with soluble PVR, and (iii) selection of viral variants adapted to use mutant PVRs. The results of these studies show that a small portion of the first immunoglobulin-like domain of PVR contacts viral residues within a deep depression on the surface of the capsid that encircles the fivefold axis of symmetry. Viral capsid residues that influence the interaction with PVR are also found in locations such as the capsid interior that cannot directly contact PVR. These mutations might influence the ability of the capsid to undergo receptor-mediated conformational transitions that are necessary for high-affinity interactions with PVR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activation of prolactin (PRL)-dependent signaling occurs as the result of ligand-induced dimerization of receptor (PRLr). Although three PRLr isoforms (short, intermediate, and long) have been characterized and are variably coexpressed in PRL-responsive tissues, the functional effects of ligand-induced PRLr isoform heterodimerization have not been examined. To determine whether heterodimeric PRLr complexes were capable of ligand-induced signaling and cellular proliferation, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFr) and the intracellular domain of the rat intermediate or short PRLr isoforms (PRLr-I or PRLr-S) were synthesized. Because high affinity binding of GM-CSF is mediated by the extracellular domain of one alpha and beta GM-CSFr pair, use of GM-CSFr/PRLr chimera specifically directed the dimerization of the PRLr intracellular domains within ligand-receptor complexes. Stable transfection of these constructs into the Ba/F3 line was demonstrated by Northern blot and immunoprecipitation analyses. Flow cytometry revealed specific binding of a phycoerythrin-conjugated human GM-CSF to the transfectants, confirming cell surface expression of the chimeric receptors. When tested for their ability to proliferate in response to GM-CSF, only chimeric transfectants expressing GM-CSFr/PRLr-I homodimers demonstrated significant [3H]thymidine incorporation. GM-CSF stimulation of transfectants expressing either GM-CSFr/PRLr-S homodimers or GM-CSFr/PRLr-S+1 heterodimers failed to induce proliferation. Consistent with these data, the GM-CSF-induced activation of two phosphotyrosine kinases, Jak2 and Fyn, was observed only in homodimeric GM-CSFr/PRLr-I transfectants. These results show that the PRLr-S functions as a dominant negative isoform, down-regulating both signaling and proliferation mediated by the receptor complex. Thus, structural motifs necessary for Jak2 and Fyn activation within the carboxy terminus of the PRLr-I, absent in the PRLr-S, are required in each member of the dimeric PRLr complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A precise and rapid method for identifying sites of interaction between proteins was demonstrated; the basis of the method is direct mass spectrometric readout from the complex to determine the specific components of the proteins that interact--a method termed affinity-directed mass spectrometry. The strategy was used to define the region of interaction of a protein growth factor with a monoclonal antibody. A combination of proteolytic digestion and affinity-directed mass spectrometry was used to rapidly determine the approximate location of a continuous binding epitope within the growth factor. The precise boundaries of the binding epitope were determined by affinity-directed mass spectrometric analysis of sets of synthetic peptide ladders that span the approximate binding region. In addition to the mapping of such linear epitopes, affinity-directed mass spectrometry can be applied to the mapping of other types of molecule-molecule contacts, including ligand-receptor and protein-oligonucleotide interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infection with enterotoxigenic Escherichia coli is a leading cause of traveler's diarrhea. Many enterotoxigenic E. coli strains produce heat-stable enterotoxin (ST), a peptide that binds to the intestinal receptor guanylyl cyclase C known as STaR. The toxin-receptor interaction elevates intracellular cGMP, which then activates apical chloride secretion, resulting in secretory diarrhea. In this report, we examine how the intracellular domains of STaR participate in the propagation and regulation of signaling. We show that STaR exists as an oligomer in both the presence and the absence of toxin. We also demonstrate that deletion of the intracellular kinase-homology domain produces a constitutively active mutant, suggesting that this domain subserves an autoinhibitory function. Finally, we constructed a point mutant within a highly conserved region of the cyclase domain that completely inactivates the catalytic activity of guanylyl cyclase. Cotransfection of this point mutant with wild-type receptor causes a dominant-negative effect on receptor activation. This suggests that interaction of receptor subunits is required for toxin-induced activation and that the cyclase domain is involved in this essential interaction. We propose that the binding of ST to STaR promotes a conformational change across the cell membrane. This removes the inhibitory effects of the kinase-homology domain and promotes an interaction between cyclase domains that leads to receptor activation. The data suggest a paradigm of signal transduction that may also be relevant to other members of the guanylyl cyclase receptor family.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The EphA3 receptor tyrosine kinase preferentially binds ephrin-A5, a member of the corresponding subfamily of membrane-associated ligands. Their interaction regulates critical cell communication functions in normal development and may play a role in neoplasia. Here we describe a random mutagenesis approach, which we employed to study the molecular determinants of the EphA3/ephrin-A5 recognition. Selection and functional characterization of EphA3 point mutants with impaired ephrin-A5 binding from a yeast expression library defined three EphA3 surface areas that are essential for the EphA3/ephrin-A5 interaction. Two of these map to regions identified previously in the crystal structure of the homologous EphB2-ephrin-B2 complex as potential ligand/receptor interfaces. In addition, we identify a third EphA3/ephrin-A5 interface that falls outside the structurally characterized interaction domains. Functional analysis of EphA3 mutants reveals that all three Eph/ephrin contact areas are essential for the assembly of signaling-competent, oligomeric receptor-ligand complexes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on phage display optimization studies with human growth hormone (GH), it is thought that the biopotency of GH cannot be increased. This is proposed to be a result of the affinity of the first receptor for hormone far exceeding that which is required to trap the hormone long enough to allow diffusion of the second receptor to form the ternary complex, which initiates signaling. We report here that despite similar site 1 kinetics to the hGH/hGH receptor interaction, the potency of porcine GH for its receptor can be increased up to 5-fold by substituting hGH residues involved in site 1 binding into pGH. Based on extensive mutations and BIAcore studies, we show that the higher potency and site 1 affinity of hGH for the pGHR is primarily a result of a decreased off-rate associated with residues in the extended loop between helices 1 and 2 that interact with the two key tryptophans Trp(104) and Trp(169) in the receptor binding hot spot. Our mutagenic analysis has also identified a second determinant (Lys(165)), which in addition to His(169), restricts the ability of non-primate hormones to activate hGH receptor. The increased biopotency of GH that we observe can be explained by a model for GH receptor activation where subunit alignment is critical for effective signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Purpose The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. Experimental Approach We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand-receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. Key Results The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. Conclusions and Implications These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apoptotic cell clearance by phagocytes is a vital part of programmed cell death that prevents dying cells from undergoing necrosis which may lead to inflammatory and autoimmune disorders. Apoptotic cells (AC) are removed by phagocytes, in a process that involves 'find me' and 'eat me' signals that facilitate the synapsing and engulfment of cell corpses. Extracellular vesicles (EV) are shed during apoptosis and promote phagocyte recruitment. Binding of AC is achieved by multiple ligand-receptor interactions. One interesting AC associated ligand is ICAM-3, a highly glycosylated adhesion molecule of the IgSF family, expressed on human leukocytes. On viable cells ICAM-3 participates in initiating immune responses, whereas on AC we show it attracts phagocytes through EV and aids in the binding of AC to the phagocytes. This project aims to characterize the role of ICAM-3 and EV in the clearance of AC and to identify the mechanisms that underlie their function in apoptotic cell clearance. Human B cells induced to apoptosis by UV irradiation were observed during their progression from viable to apoptotic via flow cytometry. The involvement of ICAM-3 in mediating interaction between AC and MØ was assessed. The ability of ICAM3 on EV to mediate chemoattraction was observed using chemotaxis assays. Additionally the anti-inflammatory effect was assessed using LPS-induced TNF-α production that suggested it may have anti-inflammatory effects. Future work in this project will assess the role of ICAM3 on EV from different phases of apoptosis to exert functional effects both in vitro and in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Receptor-tyrosine kinases (RTKs) are membrane bound receptors characterized by their intrinsic kinase activity. RTK activities play an essential role in several human diseases, including cancer, diabetes and neurodegenerative diseases. RTK activities have been regulated by the expression or silencing of several genes as well as by the utilization of small molecules. Ras Interference 1 (Rin1) is a multifunctional protein that becomes associated with activated RTKs upon ligand stimulation. Rin1 plays a key role in receptor internalization and in signal transduction via activation of Rab5 and association with active form of Ras. This study has two main objectives: (1) It determines the role of Rin1 in the regulation of several RTKs focusing on insulin receptor. This was accomplished by studying the Rin1-insulin receptor interaction using a variety of biochemical and morphological assays. This study shows a novel interaction between the insulin receptor and Rin1 through the Vps9 domain. Two more RTKs (epidermal growth factor receptor and nerve growth factor receptor) also interacted with the SH2 domain of Rin1. The effect of the Rin1-RTK interaction on the activation of both Rab5 and Ras was also studied during receptor internalization and intracellular signaling. Finally, the role of Rin1 was examined in two differentiation processes (adipogenesis and neurogenesis). Rin1 showed a strong inhibitory effect on 3T3-L1 preadipocyte differentiation but it seems to show a modest effect in PC12 neurite outgrowth. These data indicate a selective function and specific interaction of Rin1 toward RTKs. (2) It examines the role of the small molecule Dehydroleucodine (DhL) on several key signaling molecules during adipogenesis. This was accomplished by studying the differentiation of 3T3-L1 preadipocytes exposed to different concentrations of DhL in different days of the adipocyte formation process. The results indicate that DhL selectively blocked adipocyte formation, as well as the expression of PPARγ, and C/EBP&agr;. However, DhL treatment did not affect Rin1 or Rab5 expression and their activities. Taken together, the data indicate a potential molecular mechanism by which proteins or small molecules regulate selective and specific RTK intracellular membrane trafficking and signaling during cell growth and differentiation in normal and pathological conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A–C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A–C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammatory cytokines contribute to periapical tissue destruction. Their activity is potentially regulated by suppressors of cytokine signaling (SOCS), which down-regulate signal transduction as part of an inhibitory feedback loop. We investigated the expression of the cytokines tumor necrosis factor alpha (TNF-alpha); interleukin (IL)-10 and RANKL; and SOCS-1, -2, and -3 by real-time polymerase chain reaction in 57 periapical granulomas and 38 healthy periapical tissues. Periapical granulomas exhibited significantly higher SOCS-1, -2, and -3, TNF-alpha, IL-10, and RANKL messenger RNA levels when compared with healthy controls. Significant positive correlations were found between SOCS1 and IL-10 and between SOCS3 and IL-10. Significant inverse correlations were observed between SOCS1 and TNF-alpha, SOCS1 and RANKL, and SOCS3 and TNF-alpha. Increased SOCS-1, -2, and -3 messenger RNA levels in periapical granulomas may be related to the downregulation of inflammatory cytokines in these lesions; therefore, SOCS molecules may play a role in the dynamics of periapical granulomas development. (J Endod 2008;34:1480-1484)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear hormone receptor superfamily is characterized by an impressive functional diversity of its members despite a remarkable overall structural unity. A variety of ligands bind specifically to them and these receptors control gene networks that have profound effects on growth, development, and homeostasis. The ligand-receptor complexes recognize transcriptional enhancer DNA sequences, the hormone response elements, resulting in induction or repression of gene activity. The similarity between all these hormone response enhancer elements, as well as between the receptors themselves, indicates a conserved general strategy for the hormonal control of transcription by steroids. The activated receptors bind to responsive promoters and most likely mediate the assembly of stage- and tissue-specific transcription factor complexes that stimulate or inhibit gene expression.