990 resultados para lichenized fungi
Resumo:
Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.
Resumo:
Knowledge of anemophilous fungi in a given city or region is important for the ecological diagnosis and specific treatment of allergic manifestations induced by inhaled allergens. In order to diagnose the presence of anemophilous fungi, several qualitative and quantitative techniques are used depending on the study place. This study of fungal air spores was performed with a Rotorod Sampler®, an equipment which samples the air through a plastic rod attached to an electric engine that makes it spin fast enough to collect the particles in the air. The samples were collected once a week during 24 hours using the standard cycle of the manufacturers. A total of 52 samples were obtained from April 2000 through March 2001. The results revealed prevalence of ascosporos (50.49%), Cladosporium (17.86%), Aspergillus/Penicillium (15.03%), basidiosporos (3.84%), rusts (3.82%), and Helminthosporium (2.49%), and a lesser frequency of Botrytis (1.22%), Alternaria (1.19%), smuts (0.90%), Curvularia (0.87%), Nigrospora (0.61%), and Fusarium (0.08%). Also, 1.59% of the spores detected here could not be identified by the systematic key used. More fungal spores were observed during the summer than during the autumn.
Resumo:
Airbone fungi are considered important causes of allergic rhinitis and allergic asthma. The knowledge of these fungi in a city or region is important for the ecological diagnosis and specific treatment of allergic manifestations induced by inhalation of fungal allergens. The airborne fungi of Fortaleza, State of Ceará, Brazil, were studied during a one year period. Five hundred and twenty Petri dishes with Sabouraud dextrose agar medium were exposed at ten different locations in the city. The dishes exposed yielded one thousand and five hundred and twenty one colonies of twenty four genera. The most predominants were: Aspergillus (44.7%), Penicillium (13.3%), Curvularia (9.8%), Cladosporium (6.8%), Mycelia sterilia (6.0%), Fusarium (3.5%), Rhizopus (3.1%), Drechslera (2.6%), Alternaria (2.4%) and Absidia (2.2%). The results shown that Aspergillus, Penicillium, Mycelia sterilia, Fusarium and Alternaria were found during all months in the year. Absidia was more frequent during the dry season. Anemophilous fungi and the high concentration of spores in the air are important because may result in an increased number of people with allergic respiratory disease.
Resumo:
Chromoblastomycosis (CR) is a subcutaneous chronic mycosis characterized by a granulomatous inflammatory response. However, little is known regarding the pattern of leukocyte subsets in CR and the pathways involved in their recruitment. The objective of this study was to assess the cellular subsets, chemokine, chemokine receptors and enzymes in CR. The inflammatory infiltrate was characterized by immunohistochemistry using antibodies against macrophages (CD68), Langerhans'cells (S100), lymphocytes (CD3, CD4, CD8, CD45RO, CD20 and CD56) and neutrophils (CD15). The expression of MIP-1alpha (Macrophage inflammatory protein-1alpha), chemokine receptors (CXCR3 and CCR1) and enzymes (superoxide dismutase-SOD and nitric oxide synthase-iNOS) was also evaluated by the same method. We observed an increase in all populations evaluated when compared with the controls. Numbers of CD15+ and CD56+ were significantly lower than CD3+, CD4+, CD20+ and CD68+ cells. Statistical analysis revealed an association of fungi numbers with CD3, CD45RO and iNOS-positive cells. Furthermore, MIP-1alpha expression was associated with CD45RO, CD68, iNOS and CXCR3. Our results suggest a possible role of MIP-1alpha and fungi persistence in the cell infiltration in CR sites.
Resumo:
This report represents the first study of keratinophilic fungi present in soils of Jamaica. Out of the 40 soil samples examined from different habitats, 30 (75%) were positive for the presence of keratinophilic fungi, yielding 36 isolates of keratinophilic fungi. Microsporum gypseum complex (represented by 16 isolates of M. gypseum, and four of M. fulvum) was most frequent, being present in 50% of the samples. A very high occurrence of this dermatophyte in Jamaican soil is of public health significance. The remaining isolates of keratinophilic fungi were represented by Chrysosporium spp (mainly C. indicum and C. tropicum) and Sepedonium sp.
Resumo:
The identification of the fungal species belonging to the healthy microflora in animals is a precondition for the recognition of pathological processes causing them. The aim of this study was to investigate the presence of potentially pathogenic fungi in the feces of wild birds collected in Screening Centers. Samples were collected from the feces of 50 cages with different species of birds. The samples were processed according to the modified method STAIB and the plates incubated at 32 °C for up to ten days with daily observation for detection of fungal growth. The isolation of the following species was observed: Malassezia pachydermatis, Candida albicans, C. famata, C. guilliermondii, C. sphaerica, C. globosa, C. catenulata, C. ciferri, C. intermedia, Cryptococcus laurentii, Trichosporon asahii, Geotrichum klebahnii, Aspergillus spp., A. niger and Penicillium spp. Knowing the character of some opportunistic fungi is important in identifying them, facilitating the adoption of preventive measures, such as proper cleaning of cages, since the accumulation of excreta may indicate a risk for both health professionals and centers for screening public health.
Resumo:
SUMMARYDuring recent decades, antifungal susceptibility testing has become standardized and nowadays has the same role of the antibacterial susceptibility testing in microbiology laboratories. American and European standards have been developed, as well as equivalent commercial systems which are more appropriate for clinical laboratories. The detection of resistant strains by means of these systems has allowed the study and understanding of the molecular basis and the mechanisms of resistance of fungal species to antifungal agents. In addition, many studies on the correlation of in vitro results with the outcome of patients have been performed, reaching the conclusion that infections caused by resistant strains have worse outcome than those caused by susceptible fungal isolates. These studies have allowed the development of interpretative breakpoints for Candida spp. and Aspergillus spp., the most frequent agents of fungal infections in the world. In summary, antifungal susceptibility tests have become essential tools to guide the treatment of fungal diseases, to know the local and global disease epidemiology, and to identify resistance to antifungals.
Resumo:
The emergence of new fungal pathogens, either of plants or animals, and the increasing number of reported cases of resistant human pathogenic strains to the available antifungal drugs reinforces the need for better understanding the biology of filamentous fungi. Conventional drugs target components of the fungal membrane or cell wall, therefore identifying novel intracellular targets, yet unique to fungi, is a global priority.(...)