979 resultados para leg exercise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] It was investigated whether skeletal muscle K(+) release is linked to the degree of anaerobic energy production. Six subjects performed an incremental bicycle exercise test in normoxic and hypoxic conditions prior to and after 2 and 8 wk of acclimatization to 4,100 m. The highest workload completed by all subjects in all trials was 260 W. With acute hypoxic exposure prior to acclimatization, venous plasma [K(+)] was lower (P < 0.05) in normoxia (4.9 +/- 0.1 mM) than hypoxia (5.2 +/- 0.2 mM) at 260 W, but similar at exhaustion, which occurred at 400 +/- 9 W and 307 +/- 7 W (P < 0.05), respectively. At the same absolute exercise intensity, leg net K(+) release was unaffected by hypoxic exposure independent of acclimatization. After 8 wk of acclimatization, no difference existed in venous plasma [K(+)] between the normoxic and hypoxic trial, either at submaximal intensities or at exhaustion (360 +/- 14 W vs. 313 +/- 8 W; P < 0.05). At the same absolute exercise intensity, leg net K(+) release was less (P < 0.001) than prior to acclimatization and reached negative values in both hypoxic and normoxic conditions after acclimatization. Moreover, the reduction in plasma volume during exercise relative to rest was less (P < 0.01) in normoxic than hypoxic conditions, irrespective of the degree of acclimatization (at 260 W prior to acclimatization: -4.9 +/- 0.8% in normoxia and -10.0 +/- 0.4% in hypoxia). It is concluded that leg net K(+) release is unrelated to anaerobic energy production and that acclimatization reduces leg net K(+) release during exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] We hypothesized that reliance on lactate as a means of energy distribution is higher after a prolonged period of acclimatization (9 wk) than it is at sea level due to a higher lactate Ra and disposal from active skeletal muscle. To evaluate this hypothesis, six Danish lowlanders (25 +/- 2 yr) were studied at rest and during 20 min of bicycle exercise at 146 W at sea level (SL) and after 9 wk of acclimatization to 5,260 m (Alt). Whole body glucose Ra was similar at SL and Alt at rest and during exercise. Lactate Ra was also similar for the two conditions at rest; however, during exercise, lactate Ra was substantially lower at SL (65 micro mol. min(-1). kg body wt(-1)) than it was at Alt (150 micro mol. min(-1). kg body wt(-1)) at the same exercise intensity. During exercise, net lactate release was approximately 6-fold at Alt compared with SL, and related to this, tracer-calculated leg lactate uptake and release were both 3- or 4-fold higher at Alt compared with SL. The contribution of the two legs to glucose disposal was similar at SL and Alt; however, the contribution of the two legs to lactate Ra was significantly lower at rest and during exercise at SL (27 and 81%) than it was at Alt (45 and 123%). In conclusion, at rest and during exercise at the same absolute workload, CHO and blood glucose utilization were similar at SL and at Alt. Leg net lactate release was severalfold higher, and the contribution of leg lactate release to whole body lactate Ra was higher at Alt compared with SL. During exercise, the relative contribution of lactate oxidation to whole body CHO oxidation was substantially higher at Alt compared with SL as a result of increased uptake and subsequent oxidation of lactate by the active skeletal muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] 1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood lactate and net lactate release from the active leg to an extent similar to that observed in acute hypoxia, independent of work intensity. 2. Six Danish lowlanders (25-26 years) were studied during graded incremental bicycle exercise under four conditions: at sea level breathing either ambient air (0 m normoxia) or a low-oxygen gas mixture (10 % O(2) in N(2), 0 m acute hypoxia) and after 9 weeks of acclimatization to 5260 m breathing either ambient air (5260 m chronic hypoxia) or a normoxic gas mixture (47 % O(2) in N(2), 5260 m acute normoxia). In addition, one-leg knee-extensor exercise was performed during 5260 m chronic hypoxia and 5260 m acute normoxia. 3. During incremental bicycle exercise, the arterial lactate concentrations were similar at sub-maximal work at 0 m acute hypoxia and 5260 m chronic hypoxia but higher compared to both 0 m normoxia and 5260 m acute normoxia. However, peak lactate concentration was similar under all conditions (10.0 +/- 1.3, 10.7 +/- 2.0, 10.9 +/- 2.3 and 11.0 +/- 1.0 mmol l(-1)) at 0 m normoxia, 0 m acute hypoxia, 5260 m chronic hypoxia and 5260 m acute normoxia, respectively. Despite a similar lactate concentration at sub-maximal and maximal workload, the net lactate release from the leg was lower during 0 m acute hypoxia (peak 8.4 +/- 1.6 mmol min(-1)) than at 5260 m chronic hypoxia (peak 12.8 +/- 2.2 mmol min(-1)). The same was observed for 0 m normoxia (peak 8.9 +/- 2.0 mmol min(-1)) compared to 5260 m acute normoxia (peak 12.6 +/- 3.6 mmol min(-1)). Exercise after acclimatization with a small muscle mass (one-leg knee-extensor) elicited similar lactate concentrations (peak 4.4 +/- 0.2 vs. 3.9 +/- 0.3 mmol l(-1)) and net lactate release (peak 16.4 +/- 1.8 vs. 14.3 mmol l(-1)) from the active leg at 5260 m chronic hypoxia and 5260 m acute normoxia. 4. In conclusion, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] BACKGROUND: In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied. METHODS AND RESULTS: HR, Q, oxygen uptake, mean arterial pressure, and leg blood flow were determined at rest and during cycle exercise with and without vagal blockade with glycopyrrolate in 7 healthy lowlanders after 9 weeks' residence at >/=5260 m (ALT). At ALT, glycopyrrolate increased resting HR by 80 bpm (73+/-4 to 153+/-4 bpm) compared with 53 bpm (61+/-3 to 114+/-6 bpm) at sea level (SL). During exercise at ALT, glycopyrrolate increased HR by approximately 40 bpm both at submaximal (127+/-4 to 170+/-3 bpm; 118 W) and maximal (141+/-6 to 180+/-2 bpm) exercise, whereas at SL, the increase was only by 16 bpm (137+/-6 to 153+/-4 bpm) at 118 W, with no effect at maximal exercise (181+/-2 bpm). Despite restoration of maximal HR to SL values, glycopyrrolate had no influence on Q, which was reduced at ALT. Breathing FIO(2)=0.55 at peak exercise restored Q and power output to SL values. CONCLUSIONS: Enhanced parasympathetic neural activity accounts for the lowering of HR during exercise at ALT without influencing Q. The abrupt restoration of peak exercise Q in chronic hypoxia to maximal SL values when arterial PO(2) and SO(2) are similarly increased suggests hypoxia-mediated attenuation of Q.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] In the present study, we have investigated the effect of carbohydrate and protein hydrolysate ingestion on muscle glycogen resynthesis during 4 h of recovery from intense cycle exercise. Five volunteers were studied during recovery while they ingested, immediately after exercise, a 600-ml bolus and then every 15 min a 150-ml bolus containing 1) 1.67 g. kg body wt(-1). l(-1) of sucrose and 0.5 g. kg body wt(-1). l(-1) of a whey protein hydrolysate (CHO/protein), 2) 1.67 g. kg body wt(-1). l(-1) of sucrose (CHO), and 3) water. CHO/protein and CHO ingestion caused an increased arterial glucose concentration compared with water ingestion during 4 h of recovery. With CHO ingestion, glucose concentration was 1-1.5 mmol/l higher during the first hour of recovery compared with CHO/protein ingestion. Leg glucose uptake was initially 0.7 mmol/min with water ingestion and decreased gradually with no measurable glucose uptake observed at 3 h of recovery. Leg glucose uptake was rather constant at 0.9 mmol/min with CHO/protein and CHO ingestion, and insulin levels were stable at 70, 45, and 5 mU/l for CHO/protein, CHO, and water ingestion, respectively. Glycogen resynthesis rates were 52 +/- 7, 48 +/- 5, and 18 +/- 6 for the first 1.5 h of recovery and decreased to 30 +/- 6, 36 +/- 3, and 8 +/- 6 mmol. kg dry muscle(-1). h(-1) between 1.5 and 4 h for CHO/protein, CHO, and water ingestion, respectively. No differences could be observed between CHO/protein and CHO ingestion ingestion. It is concluded that coingestion of carbohydrate and protein, compared with ingestion of carbohydrate alone, did not increase leg glucose uptake or glycogen resynthesis rate further when carbohydrate was ingested in sufficient amounts every 15 min to induce an optimal rate of glycogen resynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Hypoxia affects O2 transport and aerobic exercise capacity. In two previous studies, conflicting results have been reported regarding whether O2 delivery to the muscle is increased with hypoxia or whether there is a more efficient O2 extraction to allow for compensation of the decreased O2 availability at submaximal and maximal exercise. To reconcile this discrepancy, we measured limb blood flow (LBF), cardiac output, and O2 uptake during two-legged knee-extensor exercise in eight healthy young men. They completed studies at rest, at two submaximal workloads, and at peak effort under normoxia (inspired O2 fraction 0.21) and two levels of hypoxia (inspired O2 fractions 0.16 and 0.11). During submaximal exercise, LBF increased in hypoxia and compensated for the decrement in arterial O2 content. At peak effort, however, our subjects did not achieve a higher cardiac output or LBF. Thus O2 delivery was not maintained and peak power output and leg O2 uptake were reduced proportionately. These data are consistent then with the findings of an increased LBF to compensate for hypoxemia at submaximal exercise, but no such increase occurs at peak effort despite substantial cardiac capacity for an elevation in LBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field of research of this dissertation concerns the bioengineering of exercise, in particular the relationship between biomechanical and metabolic knowledge. This relationship can allow to evaluate exercise in many different circumstances: optimizing athlete performance, understanding and helping compensation in prosthetic patients and prescribing exercise with high caloric consumption and minimal joint loading to obese subjects. Furthermore, it can have technical application in fitness and rehabilitation machine design, predicting energy consumption and joint loads for the subjects who will use the machine. The aim of this dissertation was to further understand how mechanical work and metabolic energy cost are related during movement using interpretative models. Musculoskeletal models, when including muscle energy expenditure description, can be useful to address this issue, allowing to evaluate human movement in terms of both mechanical and metabolic energy expenditure. A whole body muscle-skeletal model that could describe both biomechanical and metabolic aspects during movement was identified in literature and then was applied and validated using an EMG-driven approach. The advantage of using EMG driven approach was to avoid the use of arbitrary defined optimization functions to solve the indeterminate problem of muscle activations. A sensitivity analysis was conducted in order to know how much changes in model parameters could affect model outputs: the results showed that changing parameters in between physiological ranges did not influence model outputs largely. In order to evaluate its predicting capacity, the musculoskeletal model was applied to experimental data: first the model was applied in a simple exercise (unilateral leg press exercise) and then in a more complete exercise (elliptical exercise). In these studies, energy consumption predicted by the model resulted to be close to energy consumption estimated by indirect calorimetry for different intensity levels at low frequencies of movement. The use of muscle skeletal models for predicting energy consumption resulted to be promising and the use of EMG driven approach permitted to avoid the introduction of optimization functions. Even though many aspects of this approach have still to be investigated and these results are preliminary, the conclusions of this dissertation suggest that musculoskeletal modelling can be a useful tool for addressing issues about efficiency of movement in healthy and pathologic subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the study was to determine distribution and depletion patterns of intramyocellular lipids (IMCL) in leg muscles before and after two types of standardized endurance exercise. ¹H-magnetic resonance spectroscopic imaging was performed (1) in the thigh of eight-trained cyclists after exercising on an ergometer for 3 h at 52 ± 8% of maximal speed and (2) in the lower leg of eight-trained runners after exercising on a treadmill for 3 h at 49 ± 3% of maximal workload. Pre-exercise IMCL contents were reduced postexercise in 11 out of 13 investigated upper and lower leg muscles (P < 0.015 for all). A strong linear correlation with a slope of ∼0.5 between pre-exercise IMCL content and IMCL depletion was found. IMCL depletion differed strongly between muscles. Absolute and also relative IMCL reduction was significantly higher in muscles with predominantly slow fibers compared to those with fast fibers. Creatine levels and fiber orientation were stable and unchanged after exercise, while trimethyl-ammonium groups increased. This is presented in the accompanying paper. In conclusion, a systematic comparison of metabolic changes in cross sections of the upper and lower leg was performed. The results imply that pre-exercise IMCL levels determine the degree of IMCL depletion after exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carnitine (Car) buffers excess acetyl-CoA through the formation of acetylCar (AcCar). AcCar's acetyl group (AG-AcCar) gives rise to a peak at 2.13 ppm in ¹H MR spectra of skeletal muscle, whereas the trimethylammonium (TMA) groups of both, AcCar and Car, are thought to contribute to the TMA peak at 3.23 ppm. Surprisingly, in previous studies both resonances, AG-AcCar and TMA, increased after exercise. The aim of this study was to assess if the exercise-related TMA increase correlated with AcCar production. Magnetic resonance spectroscopic imaging (pulse repetition time/echo time = 1200/35 ms) was performed before and after prolonged exercise in the lower leg and thigh of eight runners and eight cyclists, respectively. TMA and AG-AcCar increased after exercise (P < 0.001). TMA's increase correlated with the AG-AcCar increase (R² = 0.73, P < 0.001, lower leg; R² = 0.28, P < 0.001, thigh). The correlation of ΔTMA with ΔAG-AcCar suggests that the TMA increase is due to AcCar formation. As total Car (Car + AcCar) remains unchanged with exercise, these findings suggest that the contribution of free Car to the TMA peak is limited and, therefore, is partly invisible in muscle ¹H MR spectra. This indicates that the biochemically relevant cytosolic content of free Car is considerably lower than the overall concentration determined by radioisotopic assays, a potentially important result with respect to regulation of substrate oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used in combination with a 2.5 mm and 4.5 mm amplitude to produce twelve 1-min vibration bouts. Subjects also completed two 1-min bouts where no vibration was applied. Systolic and diastolic diameters of the common femoral artery and blood cell velocity were measured by an echo Doppler ultrasound in a standing or rest condition prior to the bouts and during and after each bout. Repeated measures MANOVAs were used in the statistical analysis. Compared with the standing condition, the exercise bouts produced a four-fold increase in mean blood cell velocity (P<0.001) and a two-fold increase in peak blood cell velocity (P<0.001). Compared to the non-vibration bouts, frequencies of 10-30 Hz increased mean blood cell velocity by approximately 33% (P<0.01) whereas 20-30 Hz increased peak blood cell velocity by approximately 27% (P<0.01). Amplitude was additive to frequency but only achieved significance at 30 Hz (P<0.05). Compared with the standing condition, squatting alone produced significant increases in mean and peak blood cell velocity (P<0.001). The results show leg blood flow increased during the squat or non-vibration bouts and systematically increased with frequency in the vibration bouts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.