572 resultados para lectin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure analysis of a galactose-specific lectin from a leguminous food crop Dolichos lablab (Indian lablab beans) has been carried out to obtain insights into its quaternary association and lectin-carbohydrate interactions. The analysis led to the identification of adenine binding sites at the dimeric interfaces of the heterotetrameric lectin. Structural details of similar adenine binding were reported in only one legume lectin, Dolichos biflorus, before this study. Here, we present the structure of the galactose-binding D. lablab lectin at different pH values in the native form and in complex with galactose and adenine. This first structure report on this lectin also provides a high resolution atomic view of legume lectin-adenine interactions. The tetramer has two canonical and two DB58-like interfaces. The binding of adenine, a non-carbohydrate ligand, is found to occur at four hydrophobic sites at the core of the tetramer at the DB58-like dimeric interfaces and does not interfere with the carbohydrate-binding site. To support the crystallographic observations, the adenine binding was further quantified by carrying out isothermal calorimetric titration. By this method, we not only estimated the affinity of the lectin to adenine but also showed that adenine binds with negative cooperativity in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sequence and structure of snake gourd seed lectin (SGSL), a nontoxic homologue of type II ribosome-inactivating proteins (RIPs), have been determined by mass spectrometry and X-ray crystallography, respectively. As in type II RIPs, the molecule consists of a lectin chain made up of two beta-trefoil domains. The catalytic chain, which is connected through a disulfide bridge to the lectin chain in type II RIPs, is cleaved into two in SGSL. However, the integrity of the three-dimensional structure of the catalytic component of the molecule is preserved. This is the first time that a three-chain RIP or RIP homologue has been observed. A thorough examination of the sequence and structure of the protein and of its interactions with the bound methyl-alpha-galactose indicate that the nontoxicity of SGSL results from a combination of changes in the catalytic and the carbohydrate-binding sites. Detailed analyses of the sequences of type II RIPs of known structure and their homologues with unknown structure provide valuable insights into the evolution of this class of proteins. They also indicate some variability in carbohydrate-binding sites, which appears to contribute to the different levels of toxicity exhibited by lectins from various sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure determination of the lectin domain of MSMEG_3662 from Mycobacterium smegmatis and its complexes with mannose and methyl-alpha-mannose, the first effort of its kind on a mycobacterial lectin, reveals a structure very similar to beta-prism II fold lectins from plant sources, but with extensive unprecedented domain swapping in dimer formation. The two subunits in a dimer often show small differences in structure, but the two domains, not always related by 2-fold symmetry, have the same structure. Each domain carries three sugar-binding sites, similar to those in plant lectins, one on each Greek key motif. The occurrence of beta-prism II fold lectins in bacteria, with characteristics similar to those from plants, indicates that this family of lectins is of ancient origin and had evolved into a mature system before bacteria and plants diverged. In plants, the number of binding sites per domain varies between one and three, whereas the number is two in the recently reported lectin domains from Pseudomonas putida and Pseudomonas aeruginosa. An analysis of the sequences of the lectins and the lectin domains shows that the level of sequence similarity among the three Greek keys in each domain has a correlation with the number of binding sites in it. Furthermore, sequence conservation among the lectins from different species is the highest for that Greek key which carries a binding site in all of them. Thus, it would appear that carbohydrate binding influences the course of the evolution of the lectin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of a lectin purified from Butea monosperma seeds was determined by Molecular Replacement method. Its primary structure was determined by Tandem Mass Spectroscopy and electron density maps from X-ray diffraction data. Its quaternary structure was tetrameric, formed of two monomers, alpha and beta, beta appearing as truncated alpha. The occurrence of two tetramers in the asymmetric unit of the crystal might be a consequence of asymmetric contacts due to difference in glycosylation and variable loops structures, to form an `octamer-structure'. The crystal structure showed binding pockets for gamma Abu, having a proposed role in plant defense, at the interface of canonical dimer-partners. Hemagglutination studies, enzyme kinetics, isothermal titration calorimetry and molecular dynamics showed that the lectin is specific to N-acetyl D-galactosamine, galactose and lactose in decreasing order, and alpha-amylase inhibitor. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LysM domains have been recognized in bacteria and eukaryotes as carbohydrate-binding protein modules, but the mechanism of their binding to chitooligosaccharides has been underexplored. Binding of a Mycobacterium smegmatis protein containing a lectin (MSL) and one LysM domain to chitooligosaccharides has been studied using isothermal titration calorimetry and fluorescence titration that demonstrate the presence of two binding sites of nonidentical affinities per dimeric MSL-LysM molecule. The affinity of the molecule for chitooligosaccharides correlates with the length of the carbohydrate chain. Its binding to chitooligosaccharides is characterized by negative cooperativity in the interactions of the two domains. Apparently, the flexibility of the long linker that connects the LysM and MSL domains plays a facilitating role in this recognition. The LysM domain in the MSL-LysM molecule, like other bacterial domains but unlike plant LysM domains, recognizes equally well peptidoglycan fragments as well as chitin polymers. Interestingly, in the case presented here, two LysM domains are enough for binding to peptidoglycan in contrast to the three reportedly required by the LysM domains of Bacillus subtilis and Lactococcus lactis. Also, the affinity of the MSL-LysM molecule for chitooligosaccharides is higher than that of LysM-chitooligosaccharide interactions reported so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<正>选择素(selectin)与其配体间相互作用介导的细胞粘附在炎症级联反应、肿瘤转移和淋巴细胞归巢等病理、生理过程中起重要作用[1]。X-ray衍射发现P-选择素的最小功

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stejnulxin, a novel snake C-type lectin-like protein with potent platelet activating activity, was purified and characterized from Trimeresurus stejnegeri venom. Under non-reducing conditions, it migrated on a SDS-polyacrylamide gel with an apparent molecular mass of 120 kDa. On reduction, it separated into three polypeptide subunits with apparent molecular masses of 16 kDa (alpha), 20 kDa (beta(1)) and 22 kDa (beta(2)), respectively. The complete amino acid sequences of its subunits were deduced from cloned cDNAs. The N-terminal sequencing and cDNA cloning indicated that beta(1) and beta(2) subunits of stejnulxin have identical amino acid sequences and each contains two N-glycosylation sites. Accordingly, the molecular mass difference between 1 and 2 is caused by glycosylation heterogenity. The subunit amino acid sequences of stejnulxin are similar to those of convulxin, with sequence identities of 52.6% and 66.4% for the U. and beta, respectively. Stejnulxin induced human platelet aggregation in a dose-dependent manner. Antibodies against UNA inhibited the aggregation response to stejnulxin, indicating that activation of alpha(IIb)beta(3) and binding of fibrinogen are involved in stejnulxin-induced platelet aggregation. Antibodies against GPIbalpha or alpha(2)beta(1) as well as echicetin or rhodocetin had no significant effect on stejnulxin-induced platelet aggregation. However, platelet activation induced by stejnulxin was blocked by anti-GPVI antibodies. In addition, stejnulxin induced a tyrosine phosphorylation profile in platelets that resembled that produced by convulxin. Biotinylated stejnulxin bound specifically to platelet membrane GPVI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TMVA is a C-type lectin-like protein with potent platelet activating activity from Trimeresurus mucrosquamatus venom. In the absence of von Willebrand factor (vWF), TMVA dose-dependently induced aggregation of washed platelets. Anti-GP Ib monoclonal antib

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel C-type lectin-like protein, dabocetin, was purified from Daboia russellii siamensis venom. On SDS-polyacrylamide gel electrophoresis, it showed a single band with an apparent molecular weight of 28 kDa and two distinct bands with the apparent mole

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TMVA, a novel C-type lectin-like protein that induces platelet aggregation in a dose-dependent manner, was purified from the venom of Trimeresurus mucrosquamatus. It consists of two subunits, alpha (15,536 Da) and beta (14,873 Da). The mature amino acid sequences of the a (135 amino acids) and beta subunits (123 amino acids) were deduced from cloned cDNAs. Both of the sequences show great similarity to C-type lectin-like venom proteins, including a carbohydrate recognition domain. The cysteine residues of TMVA are conserved at positions corresponding to those of flavocetin-A and convulxin, including the additional Cys135 in the alpha subunit and Cys3 in the beta subunit. SDS-PAGE, mass spectrometry analysis and amino acid sequence showed that native TMVA exists as two convertible multimers Of (alphabeta)(2) and (alphabeta)(4) with molecular weights of 63,680 and 128,518 Da, respectively. The (alphabeta)(2) complex is stabilized by an interchain disulfide bridge between the two alphabeta-heterodimers, whereas the stabilization of the (alphabeta)(4) complex seems to involve non-covalent interactions between the (alphabeta)(2) complexes. (C) 2002 Elsevier Science Ltd. All rights reserved.