916 resultados para learning tasks
Resumo:
Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.
Resumo:
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.
Resumo:
Pavement performance is one of the most important components of the pavement management system. Prediction of the future performance of a pavement section is important in programming maintenance and rehabilitation needs. Models for predicting pavement performance have been developed on the basis of traffic and age. The purpose of this research is to extend the use of a relatively new approach to performance prediction in pavement performance modeling using adaptive logic networks (ALN). Adaptive logic networks have recently emerged as an effective alternative to artificial neural networks for machine learning tasks. ^ The ALN predictive methodology is applicable to a wide variety of contexts including prediction of roughness based indices, composite rating indices and/or individual pavement distresses. The ALN program requires key information about a pavement section, including the current distress indexes, pavement age, climate region, traffic and other variables to predict yearly performance values into the future. ^ This research investigates the effect of different learning rates of the ALN in pavement performance modeling. It can be used at both the network and project level for predicting the long term performance of a road network. Results indicate that the ALN approach is well suited for pavement performance prediction modeling and shows a significant improvement over the results obtained from other artificial intelligence approaches. ^
Resumo:
The aim of this action research of mixed-methods was investigating the role of the tasks proposed by the Task-Based Learning, TBL (WILLIS, 1996) in the process of development of speech production in English as a foreign language (EFL) at the public school. Twenty-three students from a grade of secondary school from a state school in Rio Grande do Norte were exposed systematically to the implementation of the learning tasks focused in the speech production in EFL during two months. The instruments used at the data collection – pre and post-questionnaire; field notes; focal group; and pre and post-tests - generated two kinds of data: a) qualitative (the perception of the students about their speech production and the teaching of this ability at the public school; and, the usage of strategies of communication for these learners facing TBL); and, b) quantitative (the development of pronunciation; of accuracy in the proficiency tests (test KET – Cambridge, adapted); and, of Global Oral Proficiency (POG) of these learners after the accomplishment of the learning tasks). The quantitative results of the study indicate that there was a statistically significant development of pronunciation and accuracy at the proficiency tests, after the tasks experience. The qualitative findings, in turn, represented by the learners‟ reports and from the research teacher, show that there has been greater focus on the use of communicative strategies during the learners‟ oral production throughout the intervention with the tasks.
Resumo:
Intelligent Tutoring Systems (ITSs) are computerized systems for learning-by-doing. These systems provide students with immediate and customized feedback on learning tasks. An ITS typically consists of several modules that are connected to each other. This research focuses on the distribution of the ITS module that provides expert knowledge services. For the distribution of such an expert knowledge module we need to use an architectural style because this gives a standard interface, which increases the reusability and operability of the expert knowledge module. To provide expert knowledge modules in a distributed way we need to answer the research question: ‘How can we compare and evaluate REST, Web services and Plug-in architectural styles for the distribution of the expert knowledge module in an intelligent tutoring system?’. We present an assessment method for selecting an architectural style. Using the assessment method on three architectural styles, we selected the REST architectural style as the style that best supports the distribution of expert knowledge modules. With this assessment method we also analyzed the trade-offs that come with selecting REST. We present a prototype and architectural views based on REST to demonstrate that the assessment method correctly scores REST as an appropriate architectural style for the distribution of expert knowledge modules.
Resumo:
This is a long-term study of the use of information and communication technologies by 30 older adults (ages 70–97) living in a large retirement community. The study spanned the years of 1996 to 2008, during which time the research participants grappled with the challenges of computer use while aging 12 years. The researcher, herself a ‘mature learner,’ used a qualitative research design which included observations and open-ended interviews. Using a strategy of “intermittent immersion,” she spent an average of two weeks per visit on site and participated in the lives of the research population in numerous ways, including service as their computer tutor. With e-mail and telephone contact, she was able to continue her interactions with participants throughout the 12-year period. A long-term perspective afforded the view of the evolution, devolution or cessation of the technology use by these older adults, and this process is chronicled in detail through five individual “profiles.” Three research questions dominated the inquiry: What function do computers serve in the lives of older adults? Does computer use foster or interfere with social ties? Is social support necessary for success in the face of challenging learning tasks? In answer to the first question, it became clear that computers were valued as a symbol of competence and intelligence. Some individuals brought their computers with them when transferred to the single-room residences of assisted living or nursing care facilities. Even when use had ceased, their computers were displayed to signal that their owners were or had once been keeping up to date. In answer to the second question, computer owners socialized around computing use (with in-person family members or friends) more than, or as much as, they socialized through their computers in the digital realm of the Internet. And in answer to the third question, while the existence of social support did facilitate computer exploration, more important was the social support network generated and developed among fellow computer users.
Resumo:
This study examines the role of visual literacy in learning biology. Biology teachers promote the use of digital images as a learning tool for two reasons: because biology is the most visual of the sciences, and the use of imagery is becoming increasingly important with the advent of bioinformatics; and because studies indicate that this current generation of teenagers have a cognitive structure that is formed through exposure to digital media. On the other hand, there is concern that students are not being exposed enough to the traditional methods of processing biological information - thought to encourage left-brain sequential thinking patterns. Theories of Embodied Cognition point to the importance of hand-drawing for proper assimilation of knowledge, and theories of Multiple Intelligences suggest that some students may learn more easily using traditional pedagogical tools. To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. The study compared learning outcomes following two types of learning tools. One learning tool was a traditional drawing activity, and the other was an interactive digital activity carried out on a computer. The sample was divided into two random groups, and a crossover design was implemented with two separate interventions. In the first intervention students learned how to draw and label a cell. Group 1 learned the material by computer and Group 2 learned the material by hand-drawing. In the second intervention, students learned how to draw the phases of mitosis, and the two groups were inverted. After each learning activity, students were given a quiz on the material they had learned. Students were also asked to self-evaluate their performance on each quiz, in an attempt to measure their level of metacognition. At the end of the study, they were asked to fill out a questionnaire that was used to measure the level of task engagement the students felt towards the two types of learning activities. In this study, following the first testing phase, the students who learned the material by drawing had a significantly higher average grade on the associated quiz compared to that of those who learned the material by computer. The difference was lost with the second “cross-over” trial. There was no correlation for either group between the grade the students thought they had earned through self-evaluation, and the grade that they received. In terms of different measures of task engagement, there were no significant differences between the two groups. One finding from the study showed a positive correlation between grade and self-reported time spent playing video games, and a negative correlation between grade and self-reported interest in drawing. This study provides little evidence to support claims that the use of digital tools enhances learning, but does provide evidence to support claims that drawing by hand is beneficial for learning biological images. However, the small sample size, limited number and type of learning tasks, and the indirect means of measuring levels of metacognition and task engagement restrict generalisation of these conclusions. Nevertheless, this study indicates that teachers should not use digital learning tools to the exclusion of traditional drawing activities: further studies on the effectiveness of these tools are warranted. Students in this study commented that the computer tool seemed more accurate and detailed - even though the two learning tools carried identical information. Thus there was a mismatch between the perception of the usefulness of computers as a learning tool and the reality, which again points to the need for an objective assessment of their usefulness. Students should be given the opportunity to try out a variety of traditional and digital learning tools in order to address their different learning preferences.
Resumo:
Activation functions within neural networks play a crucial role in Deep Learning since they allow to learn complex and non-trivial patterns in the data. However, the ability to approximate non-linear functions is a significant limitation when implementing neural networks in a quantum computer to solve typical machine learning tasks. The main burden lies in the unitarity constraint of quantum operators, which forbids non-linearity and poses a considerable obstacle to developing such non-linear functions in a quantum setting. Nevertheless, several attempts have been made to tackle the realization of the quantum activation function in the literature. Recently, the idea of the QSplines has been proposed to approximate a non-linear activation function by implementing the quantum version of the spline functions. Yet, QSplines suffers from various drawbacks. Firstly, the final function estimation requires a post-processing step; thus, the value of the activation function is not available directly as a quantum state. Secondly, QSplines need many error-corrected qubits and a very long quantum circuits to be executed. These constraints do not allow the adoption of the QSplines on near-term quantum devices and limit their generalization capabilities. This thesis aims to overcome these limitations by leveraging hybrid quantum-classical computation. In particular, a few different methods for Variational Quantum Splines are proposed and implemented, to pave the way for the development of complete quantum activation functions and unlock the full potential of quantum neural networks in the field of quantum machine learning.
Resumo:
JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.
Resumo:
Exposure to chronic stress can alter the structure and function of brain regions involved in learning and memory, and these effects are typically long-lasting if the stress occurs during sensitive periods of development. Until recently, adolescence has received relatively little attention as a sensitive period of development, despite marked changes in behaviour, heightened reactivity to stressors, and cognitive and neural maturation. Therefore, the purpose of the present study was to investigate the long-term effects of chronic stress in adolescence on two spatial learning and memory tasks (Morris water maze and Spatial Object Location test) and on a working memory task (Delayed Alternation task). Male rats were randomly assigned to chronic social instability stress (SS; daily 1 hour isolation and subsequent change of cage partner between postnatal days 30 and 45) or to a no-stress control group (CTL). During acquisition learning in the Morris water maze task, SS rats demonstrated impaired long-term memory for the location of the hidden escape platform compared to CTL rats, although the impairment was only seen after the first day of training. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 minutes), but not after shorter delays (15 or 60 minutes) compared to CTL rats. On the Delayed Alternation task, which assessed working memory across delays ranging from 5 to 90 seconds, no group differences were observed. These results are partially in line with previous research that revealed adult impairment on spatial learning and memory tasks after exposure to chronic social instability stress in adolescence. The observed deficits, however, appear to be limited to long-term memory as no group differences were observed during brief periods of retention.
Resumo:
There has been recent interest in using temporal difference learning methods to attack problems of prediction and control. While these algorithms have been brought to bear on many problems, they remain poorly understood. It is the purpose of this thesis to further explore these algorithms, presenting a framework for viewing them and raising a number of practical issues and exploring those issues in the context of several case studies. This includes applying the TD(lambda) algorithm to: 1) learning to play tic-tac-toe from the outcome of self-play and of play against a perfectly-playing opponent and 2) learning simple one-dimensional segmentation tasks.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.