945 resultados para latitudinal gradient
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
Relative to the present day, meridional temperature gradients in the Early Eocene age (~56-53 Myr ago) were unusually low, with slightly warmer equatorial regions (Pearson et al., 2007, doi:10.1130/G23175A.1 ) but with much warmer subtropical Arctic (Sluijs et al., 2008, doi:10.1029/2007PA001495) and mid-latitude (Sluijs et al., 2007, doi:10.1038/nature06400) climates. By the end of the Eocene epoch (~34 Myr ago), the first major Antarctic ice sheets had appeared (Zachos et al., 1992, doi:10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; Barker et al., 2007, doi:10.1016/j.dsr2.2007.07.027), suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude ~65° S). We show that southwest Pacific SSTs rose above present-day tropical values (to ~34° C) during the Early Eocene age (~53 Myr ago) and had gradually decreased to about 21° C by the early Late Eocene age (~36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration Zachos et al. (2008, doi:10.1038/nature06588), additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.
Resumo:
Atmospheric deposition of mercury to remote areas has increased threefold since pre-industrial times. Mercury deposition is particularly pronounced in the Arctic. Following deposition to surface oceans and sea ice, mercury can be converted into methylmercury, a biologically accessible form of the toxin, which biomagnifies along the marine food chain. Mass-independent fractionation of mercury isotopes accompanies the photochemical breakdown of methylmercury to less bioavailable forms in surface waters. Here we examine the isotopic composition of mercury in seabird eggs collected from colonies in the North Pacific Ocean, the Bering Sea and the western Arctic Ocean, to determine geographical variations in methylmercury breakdown at northern latitudes. We find evidence for mass-independent fractionation of mercury isotopes. The degree of mass-independent fractionation declines with latitude. Foraging behaviour and geographic variations in mercury sources and solar radiation fluxes were unable to explain the latitudinal gradient. However, mass-independent fractionation was negatively correlated with sea-ice cover. We conclude that sea-ice cover impedes the photochemical breakdown of methylmercury in surface waters, and suggest that further loss of Arctic sea ice this century will accelerate sunlight-induced breakdown of methylmercury in northern surface waters.
Resumo:
Atmospheric monitoring of high northern latitudes (> 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes compared to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. Here we show that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results emphasize the importance of climate-vegetation-carbon cycle feedbacks at high latitudes, and indicate that during the last decades photosynthetic carbon uptake has reacted much more strongly to warming than carbon release processes.
Resumo:
Two potential outcomes of a coevolutionary interaction are an escalating arms race and stable cycling. The general expectation has been that arms races predominate in cases of polygenic inheritance of resistance traits and permanent cycling predominates in cases in which resistance is controlled by major genes. In the interaction between Depressaria pastinacella, the parsnip webworm, and Pastinaca sativa, the wild parsnip, traits for plant resistance to insect herbivory (production of defensive furanocoumarins) as well as traits for herbivore “virulence” (ability to metabolize furanocoumarins) are characterized by continuous heritable variation. Furanocoumarin production in plants and rates of metabolism in insects were compared among four midwestern populations; these traits then were classified into four clusters describing multitrait phenotypes occurring in all or most of the populations. When the frequency of plant phenotypes belonging to each of the clusters is compared with the frequency of the insect phenotypes in each of the clusters across populations, a remarkable degree of frequency matching is revealed in three of the populations. That frequencies of phenotypes vary among populations is consistent with the fact that spatial variation occurs in the temporal cycling of phenotypes; such processes contribute in generating a geographic mosaic in this coevolutionary interaction on the landscape scale. Comparisons of contemporary plant phenotype distributions with phenotypes of herbarium specimens collected 9–125 years ago from across a similar latitudinal gradient, however, suggest that for at least one resistance trait—sphondin concentration—interactions with webworms have led to escalatory change.
Resumo:
Ecological work carried out on the Antarctic and Magellan shelves since the first IBMANT conference held at the UMAG, Punta Arenas in 1997 is summarized to identify areas where progress has been made and others, where impor- tant gaps have remained in understanding past and present interaction between the Antarctic and the southern tip of South America. This information is complementary to a review on shallow-water work along the Scotia Arc (Barnes, 2005) and recent work done in the deep sea (Brandt and Hilbig, 2004). While principally referring to shipboard work in deeper water, above all during the recent international EASIZ and LAMPOS campaigns, relevant work from shore stations is also included. Six years after the first IBMANT symposium, significant progress has been made along the latitudinal gradient from the Magellan region to the high Antarctic in the fields of biodiversity, biogeography and community structure, life strategies and adaptations, the role of disturbance and its significance for biodiversity, and trophic coupling of the benthic realm with the water column and sea ice. A better understanding has developed of the role of evolutionary and ecological factors in shaping past and present-day environmental conditions, species composition and distribution, and ecosystem functioning. Furthermore, the science community engaged in unravelling Antarctic-Magellan interactions has advanced in methodological aspects such as new analytical approaches for comparing biodiversity derived from visual methods, growth and age determination, trophic modelling using stable isotope ratios, and molecular approaches for taxonomic and phylogenetic purposes. At the same time, much effort has been invested to complement the species inventory of the two adjacent regions. However, much work remains to be done to fill the numerous gaps. Some perspectives are outlined in this review, and sug- gestions are made where particular emphasis should be placed in future work, much of which will be developed in the frame of SCAR's EBA (Evolution and Biodiversity in the Antarctic) programme.
Resumo:
Calcareous microfossils are widely used by paleoceanographers to investigate past sea-surface hydrology. Among these microfossils, planktonic foraminifera are probably the most extensively used tool (e.g. [1] for a review), as they are easy to extract from the sediment and can also be used for coupled geochemical (e.g; d18O, d13C, Mg/Ca) and paleo-ecological investigations. Planktonic foraminifera are marine protists, which build a calcareous shell made of several chambers which reflect in their chemistry the properties of the ambient water-masses. Planktonic foraminifera are known to thrive in various habitats, distributed not only along a latitudinal gradient, but also along different water-depth intervals within surface waters (0-1000 m). Regarding their biogeographical distribution, planktonic foraminifera assemblages therefore mirror different water-masses properties, such as temperature, salinity and nutrient content of the surface water in which they live. The investigation of the specific composition of a fossil assemblage (relative abundances) is therefore a way to empirically obtain (paleo)information on past variations of sea-surface hydrological parameters. This paper focuses on the planktonic foraminifera record from the Arctic domain. This polar region records peculiar sea-surface conditions, with the influence of nearly perennial sea-ice cover development. This has strong impact on living foraminifera populations and on the preservation of their shells in the underlying sediments.
Resumo:
The aeolid nudibranch Pteraeolidia ianthina hosts symbiotic dinoflagellates in the same way as many reef-building corals. This widespread Indo-Pacific sea slug ranges from tropical to temperate waters, and offers a unique opportunity to examine a symbiosis that occurs over a large latitudinal gradient. We used partial 28S and 18S nuclear ribosomal (nr) DNA to examine the genetic diversity of the Symbiodinium dinoflagellates contained within F ianthina. We detected Symbiodinium from genetic clades A, B, C and D. P. ianthina from tropical regions (Singapore, Sulawesi) host Symbiodinium clade C or D or both; those from the subtropical eastern Australian coast (Heron Island, Mon Repo, Moreton Bay, Tweed Heads) host Symbiodinium clade C, but those from the temperate southeastern Australian coastline (Port Stephens, Bare Island) host clade A or B or both. The Symbiodinium populations within 1 individual nudibranch could be homogeneous or heterogeneous at inter- or intra-clade levels (or both). Our results suggested that the Pteraeolidia-Symbiodinium symbiosis is flexible and favours symbiont phylotypes best adapted for that environment. This flexibility probably reflects the function of the symbiont clade in relation to the changing environments experienced along the latitudinal range, and facilitates the large geographic range of P. ianthina.
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).