923 resultados para latex reclaim


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensitisation of natural rubber latex by addition of a small quantity of an anionic surfactant prior to the addition of a coacervant results in quick coagulation. The natural rubber prepared by the novel coagulation method shows improved raw rubber characteristics, better cure characteristics in gum and carbon black filled compounds and improved mechanical properties as compared to the conventionally coagulated natural rubber. Compounds based on dried masterbatches prepared by the incorporation of fluffy carbon black in different forms of soap sensitised natural rubber latices such as fresh latex, preserved field latex, centrifuged latex and a blend of preserved field latex and skim latex show improved cure characteristics and vucanizate properties as compared to an equivalent conventional dry rubber-fluffy carbon black based compound. The latex masterbatch based vulcanizates show higher level of crosslinking and better dispersion of filler. Vulcanizates based on fresh natural rubber latex- dual filler masterbatches containing a blend of carbon black and silica prepared by the modified coagulation process shows very good mechanical and dynamic properties that could be correlated to a low rolling resistance. The carbon black/silica/nanoclay tri-filler - fresh natural rubber latex masterbatch based vulcanizates show improved mechanical properties as the proportion of nanoclay increased up to 5 phr. The fresh natural rubber latex based carbon black-silica masterbatch/ polybutadiene blend vulcanizates show superior mechanical and dynamic properties as compared to the equivalent compound vulcanizates prepared from the dry natural rubber-filler (conventional dry mix)/polybutadiene blends

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 mu m) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 mu m). However, better results were observed in concretes with silica fume and latex SBR (20-25 mu m). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled release of drugs can be efficient if a suitable encapsulation procedure is developed, which requires biocompatible materials to hold and release the drug. In this study, a natural rubber latex (NRL) membrane is used to deliver metronidazole (MET), a powerful antiprotozoal agent. MET was found to be adsorbed on the NRL membrane, with little or no incorporation into the membrane bulk, according to energy dispersive X-ray spectroscopy. X-ray diffraction and FTIR spectroscopy data indicated that MET retained its structural and spectroscopic properties upon encapsulation in the NRL membrane, with no molecular-level interaction that could alter the antibacterial activity of MET. More importantly, the release time of MET in a NRL membrane in vitro was increased from the typical 6-8 h for oral tablets or injections to ca. 100 h. The kinetics of the drug release could be fitted with a double exponential function, with two characteristic times of 3.6 and 29.9 h. This is a demonstration that the induced angiogenesis known to be provided by NRL membranes can be combined with a controlled release of drugs, whose kinetics can be tailored by modifying experimental conditions of membrane fabrication for specific applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at investigating the structural properties and mechanisms of the antifungal action of CpOsm, a purified osmotin from Calotropis procera latex. Fluorescence and CD assays revealed that the CpOsm structure is highly stable, regardless of pH levels. Accordingly, CpOsm inhibited the spore germination of Fusarium solani in all pH ranges tested. The content of the secondary structure of CpOsm was estimated as follows: alpha-helix (20%), beta-sheet (33%), turned (19%) and unordered (28%). RMSD 1%. CpOsm was stable at up to 75 degrees C, and thermal denaturation (T(m)) was calculated to be 77.8 degrees C. This osmotin interacted with the negatively charged large unilamellar vesicles (LUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol (POPG), inducing vesicle permeabilization by the leakage of calcein. CpOsm induced the membrane permeabilization of spores and hyphae from Fusarium solani, allowing for propidium iodide uptake. These results show that CpOsm is a stable protein, and its antifungal activity involves membrane permeabilization, as property reported earlier for other osmotins and thaumatin-like proteins. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles have been widely used as filler in polymer because of their unique reinforcing effect. There are many compounding methods for nanocomposites. The recent development on latex nanocomposites, a group of special nanocomposites, is reviewed in this chapter. They include carbon black/latex nanocomposite, silica/latex nanocomposite, layered silicate/latex nanocomposite, ZnO/latex nanocomposite, carbon nanotubellatex nanocomposite, lignin/latex nanocomposite, starch/latex nanocomposite, nano-fiber/latex nanocomposite, and Chitin whiskers/latex nanocomposite. Advanced compounding techniques and the latest advance on these latex nanocomposites are described. The nanoreinforcing theories of latex nanocomposites are also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hev b 6.01 is a major allergen of natural rubber latex with sensitization of 70–86% of latex glove-allergic subjects. Recently, we mapped the immunodominant T cell sites of Hev b 6.01 to the highly IgE-reactive hevein (Hev b 6.02) domain. Hev b 6.01 contains 14 cysteine residues with multiple disulphide bridges stabilizing tertiary conformation. With the goal of a standardized specific immunotherapy we developed hypoallergenic Hev b 6.01 mutants by site-directed mutagenesis of selected cysteine residues (3, 12, 17, and 41) within the Hev b 6.02 domain. Peptides corresponding to the Hev b 6.02 domain of two of the mutants were also synthesized. These mutants and peptide variants showed markedly decreased or ablated latex-allergic patient serum IgE binding by immunoblotting and ELISA. Basophil activation testing confirmed markedly decreased activation with successive cysteine substitutions of the mutants and complete abrogation with the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide. Retention of T cell reactivity is crucial for effective specific immunotherapy and all mutants and peptide variants maintained their latex-specific T cell reactivity. The ablated allergenicity but retained T cell reactivity of the Hev b 6.02 (Cys 3, 12, 17, 41 Ala) peptide suggests this peptide is a suitable candidate for inclusion in a latex immunotherapy preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An atomic force microscope was used to measure the forces acting between two polystyrene latex spheres in aqueous media. The results show an electrostatic repulsion at large separations which is overtaken by an attractive “hook” that pulls the two spheres into contact from a considerable range (20−400 nm), much larger than could be expected for a van der Waals attraction. The range of operation of this attraction varies from one experiment to another and is not correlated with electrolyte concentration. However, the range is found to decrease significantly when the level of dissolved gas in the water is reduced.