870 resultados para latent semantic analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary writing is an important part of many English Language Examinations. As grading students' summary writings is a very time-consuming task, computer-assisted assessment will help teachers carry out the grading more effectively. Several techniques such as latent semantic analysis (LSA), n-gram co-occurrence and BLEU have been proposed to support automatic evaluation of summaries. However, their performance is not satisfactory for assessing summary writings. To improve the performance, this paper proposes an ensemble approach that integrates LSA and n-gram co-occurrence. As a result, the proposed ensemble approach is able to achieve high accuracy and improve the performance quite substantially compared with current techniques. A summary assessment system based on the proposed approach has also been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text cohesion is an important element of discourse processing. This paper presents a new approach to modeling, quantifying, and visualizing text cohesion using automated cohesion flow indices that capture semantic links among paragraphs. Cohesion flow is calculated by applying Cohesion Network Analysis, a combination of semantic distances, Latent Semantic Analysis, and Latent Dirichlet Allocation, as well as Social Network Analysis. Experiments performed on 315 timed essays indicated that cohesion flow indices are significantly correlated with human ratings of text coherence and essay quality. Visualizations of the global cohesion indices are also included to support a more facile understanding of how cohesion flow impacts coherence in terms of semantic dependencies between paragraphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a novel, in-depth approach of analyzing the differences in writing style between two famous Romanian orators, based on automated textual complexity indices for Romanian language. The considered authors are: (a) Mihai Eminescu, Romania’s national poet and a remarkable journalist of his time, and (b) Ion C. Brătianu, one of the most important Romanian politicians from the middle of the 18th century. Both orators have a common journalistic interest consisting in their desire to spread the word about political issues in Romania via the printing press, the most important public voice at that time. In addition, both authors exhibit writing style particularities, and our aim is to explore these differences through our ReaderBench framework that computes a wide range of lexical and semantic textual complexity indices for Romanian and other languages. The used corpus contains two collections of speeches for each orator that cover the period 1857–1880. The results of this study highlight the lexical and cohesive textual complexity indices that reflect very well the differences in writing style, measures relying on Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) semantic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most existing approaches to Twitter sentiment analysis assume that sentiment is explicitly expressed through affective words. Nevertheless, sentiment is often implicitly expressed via latent semantic relations, patterns and dependencies among words in tweets. In this paper, we propose a novel approach that automatically captures patterns of words of similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment pattern extraction, our proposed approach does not rely on external and fixed sets of syntactical templates/patterns, nor requires deep analyses of the syntactic structure of sentences in tweets. We evaluate our approach with tweet- and entity-level sentiment analysis tasks by using the extracted semantic patterns as classification features in both tasks. We use 9 Twitter datasets in our evaluation and compare the performance of our patterns against 6 state-of-the-art baselines. Results show that our patterns consistently outperform all other baselines on all datasets by 2.19% at the tweet-level and 7.5% at the entity-level in average F-measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society (IHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2)=0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society UHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2) =0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Russian is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical project as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consists of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formalization of limited Russian language is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical specification as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vehicle detectors have been installed at approximately every 300 meters on each lane on Tokyo metropolitan expressway. Various traffic data such as traffic volume, average speed and time occupancy are collected by vehicle detectors. We can understand traffic characteristics of every point by comparing traffic data collected at consecutive points. In this study, we focused on average speed, analyzed road potential by operating speed during free-flow conditions, and identified latent bottlenecks. Furthermore, we analyzed effects for road potential by the rainfall level and day of the week. It’s expected that this method of analysis will be utilized for installation of ITS such as drive assist, estimation of parameters for traffic simulation and feedback to road design as congestion measures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility.