977 resultados para large delay
Resumo:
We have undertaken an extensive screen to identify Saccharomyces cerevisiae genes whose products are involved in cell cycle progression. We report the identification of 113 genes, including 19 hypothetical ORFs, which confer arrest or delay in specific compartments of the cell cycle when overexpressed. The collection of genes identified by this screen overlaps with those identified in loss-of-function cdc screens but also includes genes whose products have not previously been implicated in cell cycle control. Through analysis of strains lacking these hypothetical ORFs, we have identified a variety of new CDC and checkpoint genes.
Resumo:
As BIM adoption continues, the goal of a totally collaborative model with multiple contributors is attainable. Many initiatives such as the 2016 UK government level 2 BIM deadline are putting pressure on the construction industry to speed up the changeover. Clients and collaborators have higher expectations of using digital 3D models to communicate design ideas and solve practical problems. Contractors and clients are benefitting from cost saving scheduling and clash detection offered by BIM. Effective collaboration on the project will also give speed and efficiency gains. Despite this, many businesses of varying sizes are still having problems. The cost of the software and the training provides an obvious barrier for micro-enterprises and could explain a delay in adoption. Many studies have looked at these problems faced by SME and micro-enterprises. Larger companies have different problems. The efforts made by government to encourage them are quite comprehensive, but is anything being done to help smaller sectors and keep the industry cohesive? This limited study examines several companies of varying size and varying project type: architectural design businesses, main contractor, structural engineer and building consultancy. The study examines the barriers to a truly collaborative BIM workflow facing different specialities on a larger project and a contrasting small/medium project. The findings will establish that different barriers for each sector are actually pushing further apart, thus potentially creating a BIM-only construction elite, leaving the small companies remaining on 2D based drawing.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Hearing of the news of the death of Diana, Princess of Wales, in a traffic accident, is taken as an analogue for being a percipient but uninvolved witness to a crime, or a witness to another person's sudden confession to some illegal act. This event (known in the literature as a “reception event”) has previously been hypothesized to cause one to form a special type of memory commonly known as a “flashbulb memory” (FB) (Brown and Kulik, 1977). FB's are hypothesized to be especially resilient against forgetting, highly detailed including peripheral details, clear, and inspiring great confidence in the individual for their accuracy. FB's are dependent for their formation upon surprise, emotional valence, and impact, or consequentiality to the witness of the initiating event. FB's are thought to be enhanced by frequent rehearsal. FB's are very important in the context of criminal investigation and litigation in that investigators and jurors usually place great store in witnesses, regardless of their actual accuracy, who claim to have a clear and complete recollection of an event, and who express this confidently. Therefore, the lives, or at least the freedom, of criminal defendants, and the fortunes of civil litigants hang on the testimony of witnesses professing to have FB's. ^ In this study, which includes a large and diverse sample (N = 305), participants were surveyed within 2–4 days after hearing of the fatal accident, and again at intervals of 2 and 4 weeks, 6, 12, and 18 months. Contrary to the FB hypothesis, I found that participants' FB's degraded over time beginning at least as early as two weeks post event. At about 12 months the memory trace stabilized, resisting further degradation. Repeated interviewing did not have any negative affect upon accuracy, contrary to concerns in the literature. Analysis by correlation and regression indicated no effect or predictive power for participant age, emotionality, confidence, or student status, as related to accuracy of recall; nor was participant confidence in accuracy predicted by emotional impact as hypothesized. Results also indicate that, contrary to the notions of investigators and jurors, witnesses become more inaccurate over time regardless of their confidence in their memories, even for highly emotional events. ^
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. ^ In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.^
Resumo:
Creation of miniature optical delay lines and buffers is one of the greatest challenges of the modern photonics which can revolutionize optical communications and computing. Several remarkable designs of slow light optical delay lines employing coupled ring resonators and photonic crystal waveguides has been suggested and experimentally demonstrated. However, the insertion loss of these devices is too large for their practical applications. Alternatively, the recently developed photonic fabrication platform, Surface Nanoscale Axial Photonics (SNAP) allows us to fabricate record small delay lines with unprecedentedly small dispersion and low loss. In this report, we review the recent progress in fabrication and design of miniature slow light devices and buffers, in particular, those based on the SNAP technology.
Resumo:
Cloud computing realizes the long-held dream of converting computing capability into a type of utility. It has the potential to fundamentally change the landscape of the IT industry and our way of life. However, as cloud computing expanding substantially in both scale and scope, ensuring its sustainable growth is a critical problem. Service providers have long been suffering from high operational costs. Especially the costs associated with the skyrocketing power consumption of large data centers. In the meantime, while efficient power/energy utilization is indispensable for the sustainable growth of cloud computing, service providers must also satisfy a user's quality of service (QoS) requirements. This problem becomes even more challenging considering the increasingly stringent power/energy and QoS constraints, as well as other factors such as the highly dynamic, heterogeneous, and distributed nature of the computing infrastructures, etc. In this dissertation, we study the problem of delay-sensitive cloud service scheduling for the sustainable development of cloud computing. We first focus our research on the development of scheduling methods for delay-sensitive cloud services on a single server with the goal of maximizing a service provider's profit. We then extend our study to scheduling cloud services in distributed environments. In particular, we develop a queue-based model and derive efficient request dispatching and processing decisions in a multi-electricity-market environment to improve the profits for service providers. We next study a problem of multi-tier service scheduling. By carefully assigning sub deadlines to the service tiers, our approach can significantly improve resource usage efficiencies with statistically guaranteed QoS. Finally, we study the power conscious resource provision problem for service requests with different QoS requirements. By properly sharing computing resources among different requests, our method statistically guarantees all QoS requirements with a minimized number of powered-on servers and thus the power consumptions. The significance of our research is that it is one part of the integrated effort from both industry and academia to ensure the sustainable growth of cloud computing as it continues to evolve and change our society profoundly.
Resumo:
Introduction : Patients with mild cognitive impairme nt (MCI) may make suboptimal decisions particularly in complex situations, and thi s could be due to temporal discounting, the tendency to prefer immediate rewards over delayed but larger rewards. The present study proposes to evaluate intertemporal prefere nces in MCI patients as compared to healthy controls. Method : Fifty-five patients with MCI and 57 h ealthy controls underwent neuropsy- chological evaluation and a delay discounting questionnaire, which evaluates three para- meters: hyperbolic discounting ( k ), the percentage of choices for delayed and later rewards (%LL), and response consistency (Acc). Results : No significant differences were found in the delay discounting questionnaire between MC I patients and controls for the three reward sizes considered, small, medium, and large, using both k and %LL parameters. There were also no differences in the response consistency, Acc, between the two groups. Conclusions : Patients with MCI perform similarly to healthy controls in a delay discounting task. Memory deficits do not notably affect intertemporal preferences.
Resumo:
As condições de ambiente térmico e aéreo, no interior de instalações para animais, alteram-se durante o dia, devido à influência do ambiente externo. Para que análises estatísticas e geoestatísticas sejam representativas, uma grande quantidade de pontos distribuídos espacialmente na área da instalação deve ser monitorada. Este trabalho propõe que a variação no tempo das variáveis ambientais de interesse para a produção animal, monitoradas no interior de instalações para animais, pode ser modelada com precisão a partir de registros discretos no tempo. O objetivo deste trabalho foi desenvolver um método numérico para corrigir as variações temporais dessas variáveis ambientais, transformando os dados para que tais observações independam do tempo gasto durante a aferição. O método proposto aproximou os valores registrados com retardos de tempo aos esperados no exato momento de interesse, caso os dados fossem medidos simultaneamente neste momento em todos os pontos distribuídos espacialmente. O modelo de correção numérica para variáveis ambientais foi validado para o parâmetro ambiental temperatura do ar, sendo que os valores corrigidos pelo método não diferiram pelo teste Tukey, a 5% de probabilidade dos valores reais registrados por meio de dataloggers.