858 resultados para jaw fracture
Resumo:
In oriented unplasticised polyvinylchloride (uPVC) pipes, cracks propagate tangentially rather than through the wall as in conventional pipe. Notched impact, a modified peel test and the specific work of fracture approach have been used to measure fracture toughness of a conventionally extruded, a uniaxially oriented and a biaxially oriented uPVC pipe in different directions. The different failure mode for the oriented pipes was found to result from an order of magnitude increase in the fracture toughness for cracks propagating perpendicular to the orientation direction. Differences in the fracture toughness between the oriented pipes were also related to their molecular orientation. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The specific essential work of fracture, w(e), has been measured for a relatively thick walled uPVC pipe as a function of position through the wall of the pipe. w(e) was highest at the surface of the pipe and decreased significantly at the centre of the pipe wall. The variation in w(e) through the wall of the pipe correlated with the processing level of the uPVC material as measured by the critical temperature, T-c. The variability in the measured values of w(e) was substantially higher in the centre of the pipe where the processing levels were lower. This was likely to be a result of the variability in the microstructure of the material where poor processing had introduced regions of poor fusion of primary PVC particles. (C) 2002 Kluwer Academic Publishers.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
Lungfish of the tooth-plated lineage, both fossil and living, may be affected by alterations in the permanent tooth plates and associated jaw bones as they grow. In a few taxa, the unusual structures may be so common that they must be considered as normal for those species, or as a variation of the normal condition. In others the condition is rare, affecting only a few individuals. Variations, or anomalies, may appear in the growing tissues of the lungfish tooth plate at any time in the life cycle, although they usually appear early in development. Once the changes appear, they persist in the dentition. The altered structures include divided or intercalated ridges, short ridge anomaly, changes in the shape, number and position of cusps, pattern loss, and fused ridges or cusps. Criteria used to distinguish alteration from normal conditions are the incidence of the character in the population, the associated changes in the jaw bone, and the position of the altered structure in the tooth plate. The occurrence of similar changes across a wide range of different species suggests that they may have a genetic cause, especially when they are a rare occurrence in most taxa, but common enough to be a part of the normal variation in others. Prevalence of related anomalies throughout the history of the group suggests that dipnoans of the tooth-plated lineage are closely related, despite significant differences in morphology, microstructure, and function of the denfitions.
Resumo:
There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.
Resumo:
OBJECTIVE To analyze the incremental cost-utility ratio for the surgical treatment of hip fracture in older patients.METHODS This was a retrospective cohort study of a systematic sample of patients who underwent surgery for hip fracture at a central hospital of a macro-region in the state of Minas Gerais, Southeastern Brazil between January 1, 2009 and December 31, 2011. A decision tree creation was analyzed considering the direct medical costs. The study followed the healthcare provider’s perspective and had a one-year time horizon. Effectiveness was measured by the time elapsed between trauma and surgery after dividing the patients into early and late surgery groups. The utility was obtained in a cross-sectional and indirect manner using the EuroQOL 5 Dimensions generic questionnaire transformed into cardinal numbers using the national regulations established by the Center for the Development and Regional Planning of the State of Minas Gerais. The sample included 110 patients, 27 of whom were allocated in the early surgery group and 83 in the late surgery group. The groups were stratified by age, gender, type of fracture, type of surgery, and anesthetic risk.RESULTS The direct medical cost presented a statistically significant increase among patients in the late surgery group (p < 0.005), mainly because of ward costs (p < 0.001). In-hospital mortality was higher in the late surgery group (7.4% versus 16.9%). The decision tree demonstrated the dominance of the early surgery strategy over the late surgery strategy: R$9,854.34 (USD4,387.17) versus R$26,754.56 (USD11,911.03) per quality-adjusted life year. The sensitivity test with extreme values proved the robustness of the results.CONCLUSIONS After controlling for confounding variables, the strategy of early surgery for hip fracture in the older adults was proven to be dominant, because it presented a lower cost and better results than late surgery.
Resumo:
The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.
Resumo:
ABSTRACT OBJECTIVE To identify individual and hospital characteristics associated with the risk of readmission in older inpatients for proximal femoral fracture in the period of 90 days after discharge. METHODS Deaths and readmissions were obtained by a linkage of databases of the Hospital Information System of the Unified Health System and the System of Information on Mortality of the city of Rio de Janeiro from 2008 to 2011. The population of 3,405 individuals aged 60 or older, with non-elective hospitalization for proximal femoral fracture was followed for 90 days after discharge. Cox multilevel model was used for discharge time until readmission, and the characteristics of the patients were used on the first level and the characteristics of the hospitals on the second level. RESULTS The risk of readmission was higher for men (hazard ratio [HR] = 1.37; 95%CI 1.08–1.73), individuals more than 79 years old (HR = 1.45; 95%CI 1.06–1.98), patients who were hospitalized for more than two weeks (HR = 1.33; 95%CI 1.06-1.67), and for those who underwent arthroplasty when compared with the ones who underwent osteosynthesis (HR = 0.57; 95%CI 0.41–0.79). Besides, patients admitted to state hospitals had lower risk for readmission when compared with inpatients in municipal (HR = 1.71; 95%CI 1.09–2.68) and federal hospitals (HR = 1.81; 95%CI 1.00–3.27). The random effect of the hospitals in the adjusted model remained statistically significant (p < 0.05). CONCLUSIONS Hospitals have complex structures that reflect in the quality of care. Thus, we propose that future studies may include these complexities and the severity of the patients in the analysis of the data, also considering the correlation between readmission and mortality to reduce biases.
Resumo:
The mode III interlaminar fracture of carbon/epoxy laminates was evaluated with the edge crack torsion (ECT) test. Three-dimensional finite element analyses were performed in order to select two specimen geometries and an experimental data reduction scheme. Test results showed considerable non-linearity before the maximum load point and a significant R-curve effect. These features prevented an accurate definition of the initiation point. Nevertheless, analyses of non-linearity zones showed two likely initiation points corresponding to GIIIc values between 850 and 1100 J/m2 for both specimen geometries. Although any of these values is realistic, the range is too broad, thus showing the limitations of the ECT test and the need for further research.
Resumo:
Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions.