762 resultados para isothermal CSTR
Resumo:
Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.
Resumo:
The present paper concerns on the estimative of the pressure loss and entropy variation in an isothermal fluid flow, considering real gas effects. The 1D formulation is based on the isothermal compressibility module and on the thermal expansion coefficient in order to be applicable for both gas and liquid as pure substances. It is emphasized on the simple methodology description, which establishes a relationship between the formulation adopted for ideal gas and another considering real gas effects. A computational procedure has been developed, which can be used to determine the flow properties in duct with a variable area, where real gas behavior is significant. In order to obtain quantitative results, three virial coefficients for Helium equation of state are employed to determine the percentage difference in pressure and entropy obtained from different formulations. Results are presented graphically in the form of real gas correction factors, which can be applied to perfect gas calculations.
Resumo:
Improved methods for the detection of Histoplasma capsulatum are needed in regions with limited resources in which the organism is endemic, where delayed diagnosis of progressive disseminated histoplasmosis (PDH) results in high mortality rates. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid inexpensive molecular diagnosis of this disease. Primers for LAMP were designed to amplify the Hcp100 locus of H. capsulatum. The sensitivity and limit of detection were evaluated using DNA extracted from 91 clinical isolates of known geographic subspecies, while the assay specificity was determined using DNA extracted from 50 other fungi and Mycobacterium tuberculosis. Urine specimens (n = 6) collected from HIV-positive individuals with culture- and antigen-proven histoplasmosis were evaluated using the LAMP assay. Specimens from healthy persons (n = 10) without evidence of histoplasmosis were used as assay controls. The Hcp100 LAMP assay was 100% sensitive and specific when tested with DNA extracted from culture isolates. The median limit of detection was <= 6 genomes (range, 1 to 300 genomes) for all except one geographic subspecies. The LAMP assay detected Hcp100 in 67% of antigen-positive urine specimens (4/6 specimens), and results were negative for Hcp100 in all healthy control urine specimens. We have shown that the Hcp100 LAMP assay is a rapid affordable assay that can be used to expedite culture confirmation of H. capsulatum in regions in which PDH is endemic. Further, our results indicate proof of the concept that the assay can be used to detect Histoplasma DNA in urine. Further evaluation of this assay using body fluid samples from a larger patient population is warranted.
Resumo:
Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.
Resumo:
(Isothermal seed germination of Adenanthera pavonina). This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 degrees C. The slope mu of the Arrhenius plot of the germination rates is positive for T < 35 degrees C and negative for T > 35 degrees C. The activation enthalpies, estimated from closely-spaced points, shows that vertical bar Delta H-vertical bar < 12 Cal mol(-1) occur for temperatures in the range between 25 degrees C and 40 degrees C. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
This work reports aspects of seed germination at different temperatures of Adenanthera pavonina L., a woody Southeast Asian Leguminosae. Germination was studied by measuring the final percentages, the rate, the rate variance and the synchronisation of the individual seeds calculated by the minimal informational entropy of frequencies distribution of seed germination. Overlapping the germinability range with the range for the highest values of germination rates and the minimal informational entropy of frequencies distribution of seed germination, we found that the best temperature for the germination of A. pavonina seeds is 35 ºC. The slope µ of the Arrhenius plot of the germination rates is positive for T < 35 ºC and negative for T > 35 ºC. The activation enthalpies, estimated from closely-spaced points, shows that |ΔH-| < 12 Cal mol-1 occur for temperatures in the range between 25 ºC and 40 ºC. The ecological implication of these results are that this species may germinate very fast in tropical areas during the summer season. This may be an advantage to the establishment of this species under the climatic conditions in those areas.
Resumo:
[EN] The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC) requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i) the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii) the increase of the liquid volume located in the mixing cell and (iii) the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested.
Resumo:
The mixing of nanoparticles with polymers to form composite materials has been applied for decades. They combine the advantages of polymers (e.g., elasticity, transparency, or dielectric properties) and inorganic nanoparticles (e.g., specific absorption of light, magneto resistance effects, chemical activity, and catalysis etc.). Nanocomposites exhibit several new characters that single-phase materials do not have. Filling the polymeric matrix with an inorganic material requires its homogeneous distribution in order to achieve the highest possible synergetic effect. To fulfill this requirement, the incompatibility between the filler and the matrix, originating from their opposite polarity, has to be resolved. A very important parameter here is the strength and irreversibility of the adsorption of the surface active compound on the inorganic material. In this work the Isothermal titration calorimetry (ITC) was applied as a method to quantify and investigate the adsorption process and binding efficiencies in organic-inorganic–hybrid-systems by determining the thermodynamic parameters (ΔH, ΔS, ΔG, KB as well as the stoichiometry n). These values provide quantification and detailed understanding of the adsorption process of surface active molecules onto inorganic particles. In this way, a direct correlation between the adsorption strength and structure of the surface active compounds can be achieved. Above all, knowledge of the adsorption mechanism in combination with the structure should facilitate a more rational design into the mainly empirically based production and optimization of nanocomposites.
Resumo:
The purpose of this thesis is to set forth the method followed, the laboratory procedure practiced, the results obtained, the conclusions drawn, and the recommendations proposed as a consequence of a metallographic study of the isothermal transformation of an S.A.E. 6150 steel.
Resumo:
More than 3000 years ago, men began quenching and tempering tools to improve their physical properties. The ancient people found that iron was easier to shape and form in a heated condition. Charcoal was used as the fuel, and when the shaping process was completed, the smiths cooled the piece in the most obvious way, quenching in water. Quite unintentionally, these people stumbled on the process for improving the properties of iron, and the art of blacksmithing began.
Resumo:
BACKGROUND Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.