926 resultados para isopentyl acetate
Resumo:
Methanol expression regulator 1 (Mxr1p) is a zinc finger protein that regulates the expression of genes encoding enzymes of the methanol utilization pathway in the methylotrophic yeast Pichia pastoris by binding to Mxr1p response elements (MXREs) present in their promoters. Here we demonstrate that Mxr1p is a key regulator of acetate metabolism as well. Mxr1p is cytosolic in cells cultured in minimal medium containing a yeast nitrogen base, ammonium sulfate, and acetate (YNBA) but localizes to the nucleus of cells cultured in YNBA supplemented with glutamate or casamino acids as well as nutrient-rich medium containing yeast extract, peptone, and acetate (YPA). Deletion of Mxr1 retards the growth of P. pastoris cultured in YNBA supplemented with casamino acids as well as YPA. Mxr1p is a key regulator of ACS1 encoding acetyl-CoA synthetase in cells cultured in YPA. A truncated Mxr1p comprising 400 N-terminal amino acids activates ACS1 expression and enhances growth, indicating a crucial role for the N-terminal activation domain during acetate metabolism. The serine 215 residue, which is known to regulate the expression of Mxr1p-activated genes in a carbon source-dependent manner, has no role in the Mxr1p-mediated activation of ACS1 expression. The ACS1 promoter contains an Mxr1p response unit (MxRU) comprising two MXREs separated by a 30-bp spacer. Mutations that abrogate MxRU function in vivo abolish Mxr1p binding to MxRU in vitro. Mxr1p-dependent activation of ACS1 expression is most efficient in cells cultured in YPA. The fact that MXREs are conserved in genes outside of the methanol utilization pathway suggests that Mxr1p may be a key regulator of multiple metabolic pathways in P. pastoris.
Resumo:
Techniques are described for preparing acetate peels of sectioned valves of ocean quahogs, Arctica islandica, for age determinations. The respective sequence of preparation begins by sectioning left valves oriented to include a single hinge tooth, bleaching to remove the heavy periostracum, embedding the valves in an epoxy resin, grinding and polishing the embedments to a high luster, etching the exposed cut valve surfaces, and applying sheet acetate with acetone. Annuli are clearly defined relative to growth increments in the peel preparations for all sizes and ages of ocean quahogs. (PDF file contains12 pages.)
Resumo:
A study was conducted to determine the efficacy of carp pituitary extract, deoxycorticosterone acetate, and human chorionic gonadotropin in inducing spawning in Clarias lazera . Results indicate deoxycorticosterone acetate to be more potent than pituitary extract, although the difference is not significant
Resumo:
A study was carried out to determine the effect of tocopherol acetate along with cod liver oil astaxanthin enriched Moina micrura (MC- control, Ml- tocopherol acetate enriched, M2-tocopherol acetate combined with cod liver oil (CLO) enriched and M3- tocopherol acetate combined with astaxanthin enriched) on growth, survival and fatty acid composition of M. rosenbergii (de Man) larvae (TC- unenriched Moina fed larvae, Tl- tocopherol acetate enriched Moina fed larvae, T2- tocopherol acetate + CLO enriched Moina fed larvae to T3 – tocopherol acetate+ astaxanthin enriched Moina fed larvae). Growth was expressed as the time taken in to the settlement of 95% post larvae. Maximum growth i.e., the lowest time taken to the 95% PL settlement (40 days) and the maximum survival percentage (61%) was observed in both T2 and T3 treatments fed with M2 and M3 Moina respectively. Minimum growth and survival was observed in unenriched Moina fed larvae (TC). In larval treatments T2, (larvae fed with (M2) vitamin E + CLO enriched Moina), showed a higher percentage of EPA, DHA and higher HUFA level than other treatments.
Resumo:
In this study microbiological , chemical quality and fatty acid composition of grass carp (Ctenopharyngodon idella) fillets treated by dipping in sodium acetate (%1 and %3), nisin (% 0.1 and % 0.2) and combination of sodium acetate and nisin was evaluated during 16 days of refrigerated of 4°C Antilisterial effect of nisin was enhanced with the increased concentration of sodium acetate. At day 12 post storage, Listeria monocytogenese count was higher in the control group than the recommended value, however in sodium acetate and nisin treated samples, the count was lower (5.17-5.91 log cfu/g). With increasing the concentrations of sodium acetate, mesophilic counts were lower. Regarding nisin, better results was obtained by applying %0.1 nisin. Greater inhibition of mesophile bacteria was observed when combination treatment was used. The number of lactobacillus was lower when higher concentrations of sodium acetate and nisin were used. Total Volatile Nitrogen values at the end of the experiment were lower in the samples treated with both nisin and sodium acetate and the better results were obtained in combination treatments. Peroxide (PV) at the end of the experiment was 1.9 meq/kg in control, and the lowest values were observed for the treatments 3(%0 sodium acetate +% 0.2 nisin) and 9(%3 sodium acetate +% 0.2 nisin) between 1.08 and 1.62 meq/kg without significant difference. Thiobarbituric acid (TBA) levels at the end of experiment have been shown to be 0.46 mg malonaldehyde per kg in the control. On the other hand treatments 9 had the TBA values of 0.19 mg malonaldehyde per kg which was significantly lower than that of control. Polyunsaturated fatty acids increased by increasing the sodium acetate doses and instead saturated fatty acids and n-6/n-3 ratio decreased. The ratio of UFA/SFA and also C22:6/C16:0 increased when a higher concentration of sodium acetate has been used. The best result obtained by using 3% of sodium acetate but no such relation with nisin was observed.
Resumo:
A novel microstructured polymer optical fiber (MPOF) probe for nitrites (NO(2)(-)) detection was made by forming rhodamine 6G (Rh 6G)-doped cellulose acetate (CA) on the side wall of array holes in a MPOF It was found that the MPOF probe only have a response to nitrites in a certain concentration of sulfuric acid solution The calibration graph of fluorescence intensity versus nitrites concentration was linear in the range of 2.0 x 10(-4) g/ml-5.0 x 10(-3) g/ml. The method possesses case of chemical modification, low cost design, and potential for direct integration with existing instrumentation, and has been applied to the determination of nitrites in real samples with satisfactory results. (C) 2010 Elsevier B.V. All rights reserved
Resumo:
A modified microfiltration membrane has been prepared by blending a matrix polymer with a functional polymer. Cellulose acetate (CA) was blended with polyethyleneimine (PEI), which was then crosslinked by polyisocyanate, in a mixture of solvents. In the membrane, PEI can supply coupling sites for ligands in affinity separation or be used as ligands for metal chelating, removal of endotoxin or ion exchange. The effects of the time of phase inversion induced by water vapor, blended amount of PEI and amount of crosslinking agent on membrane performance were investigated. The prepared blend membranes have specific surface area of 12.04-24.11 m(2)/g and pure water flux (PWF) of 10-50 ml/cm(2) min with porosity of 63-75%. The membranes, made of 0.15 50 wt.% PEI/CA ratio and 0.5 crosslinking agent/PEI ratio, were applied to adsorbing Cu2+ and bovine serum albumin (BSA) individually. The maximum adsorption capacity of Cu2+ ion on the blend membrane is 7.42 mg/g dry membrane. The maximum adsorption capacities of BSA on the membranes with and without chelating Cu2+ ion are 86.6 and 43.8 mg/g dry membrane, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of the title compound, C12H10ClF3O3, was determined in order to establish the configuration of the C double bond. The compound was found to be the Z isomer. The crystal structure is dominated by Cl center dot center dot center dot O halogen bonds [Cl center dot center dot center dot O = 3.111 (3) angstrom], as well as C-H center dot center dot center dot O and C-H center dot center dot center dot F hydrogen-bonding interactions, that connect neighboring molecules into a three-dimensional supramolecular network.
Resumo:
The separation of ethyl acetate and ethanol (EtOH) is important but difficult due to their close boiling points and formation of an azeotropic mixture. The separation of the azeotropic mixture of ethyl acetate and EtOH using the hydrophilic ionic liquids (ILs) 1-alkyl-3-methylimidazolium chloride (alkyl = butyl, hexyl, and octyl) ([C(n)mim]Cl, n = 4, 6, 8) and 1-allyl-3-methylimidazolium chloride and bromide ([Amim]Cl and [Amim]Br) has been investigated. Triangle phase diagrams of five ILs with ethyl acetate and EtOH were constructed, and the biphasic regions were found as follows: [Amim]Cl > [Amim]Br > [C(4)mim]Cl > [C(6)mim]Cl > [C(8)mim]Cl. The mechanisms of the ILs including cation, anion, and polarity effect were discussed.
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.