906 resultados para isolation-by-distance
Resumo:
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Resumo:
Extensive studies using molecular markers on butterflies have shown how a highly fragmented landscape may result in the reduction of gene flow among patches of habitat and, consequently, increase genetic differentiation among populations. However, little is known about Heliconius geographical structure and the effects of fragmentation on the connectivity of populations. Furthermore, findings on the effects of the population structure on the dynamics of mimicry evolution in Heliconius butterflies need to be tested in H. erato and H. melpomene specimens found in other locations other than Central and northern South Americas. For the present study, we had two motivations: (1) compare the population structure of H. erato and H. melpomene given the highly fragmented Brazil s Atlantic Forest habitat; and (2) studying population structure of co-mimics could give us insights into the dynamics of mimicry evolution. For this, we analysed the spatial structure and connectivity of eight populations of Heliconius butterflies, in a total of 137 H. erato specimens and 145 H. melpomene specimens, using nine microsatellites loci, 1144 AFLPs markers and 282 mitochondrial DNA sequences. In general, both species exhibited evidence of population subdivision but no isolation by distance indicating some extent of genetic differentiation among populations. Contrary to Kronforst & Gilbert s (2008) Costa Rican Heliconius, H. melpomene exhibited more genetic differentiation than H. erato based on nuclear markers. However, for mitochondrial DNA, H. erato populations showed more genetic differentiation than H. melpomene. Our results corroborate to other studies on Heliconius butterflies concerning the pronounced population subdivision and local genetic drift found in this genus. Nevertheless, the pattern of this differentiation varies significantly from the pattern found in studies conducted in Central America, where H. erato is generally more differentiated and structured than H. melpomene, based on nuclear markers. This different pattern may reflect different evolutionary histories of Heliconius species in Northeastern Brazil s Atlantic Forest
Resumo:
Sheath blight disease (SBD) on rice, caused by Rhizoctonia solani AG-1 IA, is one of the most devastating rice diseases on a global basis, including China (in Eastern Asia), the world's largest rice-growing country. We analyzed the population genetics of nine rice-infecting populations from China using nine microsatellite loci. One allopatric population from India (Southern Asia) was included in the analyses. In total, 300 different multilocus genotypes were found among 572 fungal isolates. Clonal fractions within rice fields were 16 to 95%, suggesting that sclerotia were a major source of primary inoculum in some fields. Global Phi(ST) statistics (Phi(ST) = 42.49; P <= 0.001) were consistent with a relatively high level of differentiation among populations overall; however, pairwise comparisons gave nonsignificant R(ST) values, consistent with contemporary gene flow among five of the populations. Four of these populations were located along the Yangtze River tributary network. Gene flow followed an isolation-by-distance model consistent with restricted long-distance migration. Historical migration rates were reconstructed and yielded values that explained the current levels of population subdivision. Except for one population which appeared to be strictly clonal, all populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction. One population had a strictly recombining structure (all loci were in Hardy-Weinberg equilibrium) but the remaining populations from China and the one from India exhibited varying degrees of sexual reproduction. Six populations showed significant F(IS) values consistent with inbreeding.
Resumo:
Determining the genetic structure of tropical bird populations is important for assessing potential genetic effects of future habitat fragmentation and for testing hypotheses about evolutionary mechanisms promoting diversification. Here we used 10 microsatellite DNA loci to describe levels of genetic differentiation for five populations of the lek-mating blue manakin (Chiroxiphia caudata), sampled along a 414-km transect within the largest remaining continuous tract of the highly endangered Atlantic Forest habitat in southeast Brazil. We found small but significant levels of differentiation between most populations. F-ST values varied from 0.0 to 0.023 (overall F-ST = 0.012) that conformed to a strong isolation by distance relationship, suggesting that observed levels of differentiation are a result of migration-drift equilibrium. N(e)m values estimated using a coalescent-based method were small (<= 2 migrants per generation) and close to the minimum level required to maintain genetic similarity between populations. An implication of these results is that if future habitat fragmentation reduces dispersal between populations to even a small extent, then individual populations may undergo a loss of genetic diversity due to an increase in the relative importance of drift, since inbreeding effective population sizes are relatively small (N-e similar to 1000). Our findings also demonstrate that population structuring can occur in a tropical bird in continuous habitat in the absence of geographical barriers possibly due to behavioural features of the species.
Resumo:
A common approach used to estimate landscape resistance involves comparing correlations of ecological and genetic distances calculated among individuals of a species. However, the location of sampled individuals may contain some degree of spatial uncertainty due to the natural variation of animals moving through their home range or measurement error in plant or animal locations. In this study, we evaluate the ways that spatial uncertainty, landscape characteristics, and genetic stochasticity interact to influence the strength and variability of conclusions about landscape-genetics relationships. We used a neutral landscape model to generate 45 landscapes composed of habitat and non-habitat, varying in percent habitat, aggregation, and structural connectivity (patch cohesion). We created true and alternate locations for 500 individuals, calculated ecological distances (least-cost paths), and simulated genetic distances among individuals. We compared correlations between ecological distances for true and alternate locations. We then simulated genotypes at 15 neutral loci and investigated whether the same influences could be detected in simple Mantel tests and while controlling for the effects of isolation-by distance using the partial Mantel test. Spatial uncertainty interacted with the percentage of habitat in the landscape, but led to only small reductions in correlations. Furthermore, the strongest correlations occurred with low percent habitat, high aggregation, and low to intermediate levels of cohesion. Overall genetic stochasticity was relatively low and was influenced by landscape characteristics.
Resumo:
The description of patterns of variation in any character system within well-defined species is fundamental for understanding lineage diversification and the identification of geographic units that represent opportunities for sustained evolutionary divergence. In this paper, we analyze intraspecific variation in cranial shape in the Pumpkin Toadlet, Brachycephalus ephippium-a miniaturized species composed of isolated populations on the slopes of the mountain ranges of southeastern Brazil. Shape variables were derived using geometric-statistical methods that describe shape change as localized deformations in a spatial framework defined by anatomical landmarks in the cranium of B. ephippium. By statistically weighting differences between landmarks that are not close together (changes at larger geometric scale), cranial variation among geographic samples of B. ephippium appears continuous with no obvious gaps. This pattern of variation is caused by a confounding effect between within-sample allometry and among-sample shape differences. In contrast, by statistically weighting differences between landmarks that are at close spacing (changes at smaller geometric scale), differences in shape within- and among-sample variation are not confounded, and a marked geographic differentiation among population samples of B. ephippium emerges. The observed pattern of geographic differentiation in cranial shape apparently cannot be explained as isolation-by-distance. This study provides the first evidence that the detection of morphological variation or lack thereof, that is, morphological conservatism, may be conditional on the scale of measurement of variation in shape within the methodological formalism of geometric morphometrics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhao, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhao States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
Resumo:
Previous analyses of mitochondrial (mt)DNA and allozymes covering the range of the Iberian endemic golden-striped salamander, Chioglossa lusitanica, suggested a Pleistocene split of the historical species distribution into two population units (north and south of the Mondego river), postglacial expansion into the northernmost extant range, and secondary contact with neutral diffusion of genes close to the Mondego river. We extended analysis of molecular variation over the species range using seven microsatellite loci and the nuclear P-fibrinogen intron 7 (beta-fibint7). Both microsatellites and beta-fibint7 showed moderate to high levels of population structure, concordant with patterns detected with mtDNA and allozymes; and a general pattern of isolation-by-distance, contrasting the marked differentiation of two population groups suggested by mtDNA and allozymes. Bayesian multilocus analyses showed contrasting results as populations north and south of the Douro river were clearly differentiated based on microsatellites, whereas allozymes revealed differentiation north and south of the Mondego river. Additionally, decreased microsatellite variability in the north supported the hypothesis of postglacial colonization of this region. The well-documented evolutionary history of C. lusitanica, provides an excellent framework within which the advantages and limitations of different classes of markers can be evaluated in defining patterns of population substructure and inferring evolutionary processes across distinct spatio-temporal scales. The present study serves as a cautionary note for investigations that rely on a single type of molecular marker, especially when the organism under study exhibits a widespread distribution and complex natural history. (C) 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95, 371-387.
Resumo:
Osteocephalus taurinus é uma espécie nominal de ampla distribuição na Amazônia e nos llanos do Orinoco. Sua grande variação morfológica indica que se trata de um complexo de espécies. O presente estudo examina a variação geográfica de vários caracteres morfológicos e morfométricos da espécie nominal, avalia a hipótese de tratar-se de fato um complexo de espécies; e testa a teoria da atual distribuição das formas, através de padrões biogeográficos, ecológicos e de regímen de precipitação já definidos. A partir de 431 espécimes estudados foram selecionadas 16 populações, nas quais foram analisados 20 caracteres anatômicos internos, 14 caracteres morfométricos e seis caracteres morfológicos externos. Através de análises estatística e mapas de isolinhas evidenciou-se que O. taurinus não se trata de um complexo de espécies e sim possui uma grande variação intra e interpopulacional das caraterísticas morfométricas e morfológicas. Simultaneamente, foram observados caracteres anatômicos internos polimórficos. O primeiro componente obtido através de uma análise de componentes principais mostra uma variação clinal do tamanho corporal ao longo da distribuição geográfica total, mais evidente nos machos. Em outros caracteres analisados, a variação fico independente do cline. O padrão espacial do tamanho indicou que as formas maiores ocorrem nas terras baixas da Amazônia, onde a vegetação de floresta ombrofila divide as áreas de cerrado ao norte e ao sul do continente sul americano. Nestas últimas áreas, ocorrem com maior intensidade as formas menores. Esta distribuição espacial não se explicou através das divisões propostas por outros autores para Amazônia, o que pode ser devido a um mascaramento gerado pela grande variação intrapopulacional. O modelo espacial do tamanho corporal de O. taurinus não corresponde a um padrão de isolamento por distância, o que pode sugerir que a colonização da espécie em algumas áreas seja recente. Este estudo confirma a hipótese da origem do gênero no início do Plioceno, o que indica que O. taurinus teria tido tempo suficiente para se dispersar antes do surgimento dos Andes como barreira geográfica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In west-central Texas, USA, abatement efforts for the gray fox (Urocyon cinereoargenteus) rabies epizootic illustrate the difficulties inherent in large-scale management of wildlife disease. The rabies epizootic has been managed through a cooperative oral rabies vaccination program (ORV) since 1996. Millions of edible baits containing a rabies vaccine have been distributed annually in a 16-km to 24-km zone around the perimeter of the epizootic, which encompasses a geographic area >4 x 105 km2. The ORV program successfully halted expansion of the epizootic into metropolitan areas but has not achieved the ultimate goal of eradication. Rabies activity in gray fox continues to occur periodically outside the ORV zone, preventing ORV zone contraction and dissipation of the epizootic. We employed a landscape-genetic approach to assess gray fox population structure and dispersal in the affected area, with the aim of assisting rabies management efforts. No unique genetic clusters or population boundaries were detected. Instead, foxes were weakly structured over the entire region in an isolation by distance pattern. Local subpopulations appeared to be genetically non-independent over distances >30 km, implying that long-distance movements or dispersal may have been common in the region. We concluded that gray foxes in west-central Texas have a high potential for long-distance rabies virus trafficking. Thus, a 16-km to 24-km ORV zone may be too narrow to contain the fox rabies epizootic. Continued expansion of the ORV zone, although costly, may be critical to the long-term goal of eliminating the Texas fox rabies virus variant from the United States.
Resumo:
Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.
Resumo:
trabajo realizado por Medina Alcaraz, C., Castro, J.J., Sosa, P. A.
Resumo:
ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.