997 resultados para island ecosystems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study documents marine ecological conditions at Rincon Island, located approximately 0.8 kilometer offshore between Ventura and Santa Barbara, California, in a depth of 14 meters. The island, which was constructed between 1957 and 1958 to serve as a permanent platform for oil and gas production, is particularly suitable for ecological study. Habitat features associated with the armor rock and concrete tetrapods surrounding the island support a 'microecosystem' which differs in biotic composition from surrounding natural bottom areas. A major part of the study was devoted to analysis of seasonal dynamics in biotic composition. Permanent transects extending from the high intertidal to natural bottom were established normal to each of the four cardinal sides of the island. All macrobiota were censused in duplicate 1-square meter quadrats along each transect during each of the four seasons. Data analysis indicated that many species exhibit significant variability in abundance from one season to the next. In general, the findings indicate a rich and varied fauna and flora associated with the high-relief solid substrate of Rincon Island which differs substantially from the more depauperate natural bottom habitats in the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"December 1996."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrologic modifications have negatively impacted the Florida Everglades in numerous significant ways. The compartmentalization of the once continuously flowing system into the Water Conservation Areas (WCAs) caused disruption of the slow natural flow of water south from Lake Okeechobee through the Everglades to Florida Bay. The ponding of water in the WCAs, the linking of water flow to controlled water levels, and the management of water levels for anthropogenic vs. ecological well-being has caused a reduction in the spatial heterogeneity of the Everglades leading to greater uniformity in topography and vegetation. These effects are noticeable as the degradation in structure of the Everglades Ridge and Slough environment and associated Tree Islands. In aquatic systems water flow is of fundamental importance in shaping the structure and function of the ecosystem. The organized patterns of parallel orientation of ridges, sloughs, and tear-drop shaped tree islands along historic flow paths attest to the importance of water movement in structuring this system. Our main objective was to operate and manage the LILA facility to provide a broad potential as a research platform for an integrated group of multidisciplinary, multi-agency scientists collaborating on multifunctional studies aimed primarily at determining the effects of CERP water management scenarios on the ecology of tree islands and ridge and slough habitats. We support Everglades water management, CERP, and the Long-Term Plan by defining hydrologic regimes that sustain healthy tree islands and ridge and slough ecosystems. Information gained through this project will help to reduce the uncertainty of predicting the tree island and ridge and slough ecosystem response to changes in hydrologic conditions. Additionally, we have developed the LILA site as a visual example of Everglades restoration programs in action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. ^ To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. ^ As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. ^ My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beyond its importance in maintaining ecosystems, sharks provide services that play important socioeconomic roles. The rise in their exploitation as a tourism resource in recent years has highlighted economic potential of non-destructive uses of sharks and the extent of economic losses associated to declines in their population. In this work, we present estimates for use value of sharks in Fernando de Noronha Island - the only ecotouristic site offering shark diving experience in the Atlantic coast of South America. Through the Travel Cost Method we estimate the total touristic use value aggregated to Noronha Island by the travel cost was up to USD 312 million annually, of which USD 91.1 million are transferred to the local economy. Interviewing people from five different economic sectors, we show shark-diving contribute with USD 2.5 million per year to Noronha’s economy, representing 19% of the island’s GDP. Shark-diving provides USD 128.5 thousand of income to employed islanders, USD 72.6 thousand to government in taxes and USD 5.3 thousand to fishers due to the increase in fish consumption demanded by shark divers. We discover, though, that fishers who actually are still involved in shark fishing earn more by catching sharks than selling other fish for consumption by shark divers. We conclude, however, that the non-consumptive use of sharks is most likely to benefit large number of people by generating and money flow if compared to the shark fishing, providing economic arguments to promote the conservation of these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An object based image analysis approach (OBIA) was used to create a habitat map of the Lizard Reef. Briefly, georeferenced dive and snorkel photo-transect surveys were conducted at different locations surrounding Lizard Island, Australia. For the surveys, a snorkeler or diver swam over the bottom at a depth of 1-2m in the lagoon, One Tree Beach and Research Station areas, and 7m depth in Watson's Bay, while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. The camera lens provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by fin kicks, and corresponded to a surface distance of approximately 2.0 - 4.0 m. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Dominant benthic or substrate cover type was assigned to each photo by placing 24 points random over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned a dominant cover type using a benthic cover type classification scheme containing nine first-level categories - seagrass high (>=70%), seagrass moderate (40-70%), seagrass low (<= 30%), coral, reef matrix, algae, rubble, rock and sand. Benthic cover composition summaries of each photo were generated automatically in CPCe. The resulting benthic cover data for each photo was linked to GPS coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South. The OBIA class assignment followed a hierarchical assignment based on membership rules with levels for "reef", "geomorphic zone" and "benthic community" (above).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal marine ecosystems are among the most impacted globally, attributable to individual and cumulative effects of human disturbance. Anthropogenic nutrient loading is one stressor that commonly affects nearshore ecosystems, including seagrass beds, and has positive and negative effects on the structure and function of coastal systems. An additional, previously unexplored mechanistic pathway through which nutrients may indirectly influence nearshore systems is by driving blooms of benthic jellyfish. My dissertation research, conducted on Abaco Island, Bahamas, focused on elucidating the role that benthic jellyfish have in structuring systems in which they are common (i.e., seagrass beds), and explored mechanistic processes that may drive blooms of this taxa. To establish that human disturbances (e.g., elevated nutrient availability) may drive increased abundance and size of benthic jellyfish, Cassiopea spp., I conducted surveys in human-impacted and unimpacted coastal sites. Jellyfish were more abundant (and larger) from human-impacted areas, positively correlated to elevated nutrient availability. In order to elucidate mechanisms linking Cassiopea spp. with elevated nutrients, I evaluated whether zooxanthellae from Cassiopea were higher from human-disturbed systems, and whether Cassiopea exhibited increased size following nutrient input. I demonstrated that zooxanthellae population densities were elevated in human-impacted sites, and that nutrients led to positive jellyfish growth. As heightened densities of Cassiopea jellyfish may exert top-down and bottom-up controls on flora and fauna in impacted seagrass beds, I sought to examine ecological responses to Cassiopea. I evaluated whether there was a relationship between high Cassiopea densities and lower benthic fauna abundance and diversity in shallow seagrass beds. I found that Cassiopea have subtle effects on benthic fauna. However, through an experiment conducted in a seagrass bed in which nutrients and Cassiopea were added, I demonstrated that Cassiopea can result in seagrass habitat modification, with negative consequences for benthic fauna. My dissertation research demonstrates that increased human-driven benthic jellyfish densities may have indirect and direct effects on flora and fauna of coastal marine systems. This knowledge will advance our understanding of how human disturbances shift species interactions in coastal ecosystems, and will be critical for effective management of jellyfish blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring seawater CO2 for a full year with seasonal observations of community metabolism in Ishigaki Island, Japan, revealed seasonal variation and anomalous values owing to the bleaching event in 1998. The daily average pCO2 showed a seasonal pattern on an annual scale, 280 to 320 ?atm in winter and 360 to 400 ?atm in summer, which was determined primarily by the seasonal change in seawater temperature. By contrast, the range in the diel variation in pCO2, 400 to 500 ?atm in summer 200 to 300 ?atm in winter, was attributed to the seasonal variation in community metabolism: Gross primary production (P g ) and respiration (R) were high in summer and low in winter. During the 1998 bleaching event, although P g and R increased, community excess organic production (E) decreased by three quarters compared with the same month in 1999, when the coral community showed high recovery. This change in metabolism led to large diel range and increased average value of pCO2 levels in the seawater on the reef flat. The decrease in the range and increase in the average value of pCO2 were observed by monitoring the Palau barrier reef flat, where overall mortality of corals occurred after the bleaching. All the metabolic parameters, P g , R, E and calcification (G) were reduced by half after the bleaching, which increased the average pCO2 value by 10 ?atm and decreased its diel range from 200-400 ?atm to 100-200 ?atm. Bleaching and resultant mortality of coral reefs led to degradation of their metabolic performance, and thus resulted in the loss of their active interaction with the carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is predicted that surface ocean pH will reach 7.9, possibly 7.8 by the end of this century due to increased carbon dioxide (CO2) in the atmosphere and in the surface ocean. While aragonite-rich sediments don't begin to dissolve until a threshold pH of ~ 7.8 is reached, dissolution from high-Mg calcites is evident with any drop in pH. Indeed, it is high-Mg calcite that dominates the reaction of carbonate sediments with increased CO2, which undergoes a rapid neomorphism process to a more stable, low-Mg calcite. This has major implications for the future of the high-Mg calcite producing organisms within coral reef ecosystems. In order to understand any potential buffering system offered by the dissolution of carbonate sediments under a lower oceanic pH, this process of high-Mg calcite dissolution in the reef environment must be further elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the contribution of soft-bottoms to the carbon cycle in coral reefs, the net community production (p) was measured in winter at 3 stations on La Saline inner reef flat (Reunion Island). Changes in pH and total alkalinity at different irradiances (I) were assessed using benthic chambers (0.2 m2) during a 1-h incubation. Mean grain size, the silt and clay load and chlorophyll a content of the sediments were analysed in each chamber. Daily community production (P), gross community production (Pg) and community respiration (R) were estimated from p-I curves and daily irradiance variations (PAR, 400-700 nm). Sediment characteristics and chlorophyll a contents did not differ between the three sites, except for the silt and clay fraction at one station. R being higher than Pg (84.88 ± 7.36 and -62.29 ± 3.34 mmolC m-2 d-1 respectively), P value reached 22.59 ± 5.66 mmolC m-2 d-1. The sediments were therefore heterotrophic with a mean Pg/R lower than 1 (0.74 ± 0.05) and appear to be a carbon source. Our data suggested the importance of the degradation process in the functioning of near-reef sediments.