773 resultados para iron alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical transmission electron microscopy indicates that liquid film migration occurs during sintering of an Al-Cu-Mg alloy, that intragranular liquid pools develop from migrating films and that iron segregates to these pools. It is suggested that a high localised iron concentration retards the liquid film migration rate by reducing the coherency strain in the retreating grain, causing a region of the film to detach from the boundary, thus forming an intragranular pool in the advancing grain. Alloys with low iron levels develop few intragranular pools and have high sintered densities. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of the mechanical properties of 20 experimental alloys has been carried out. The effect of different contents of Si, Cu, Mg, Fe and Mn, as well as solidification rate, has been assessed using a strength-ductility chart and a quality index-strength chart developed for the alloys. The charts show that the strength generally increases and the ductility decreases with an increasing content of Cu and Mg. Increased Fe (at Fe/Mn ratio 0.5) dramatically lowers the ductility and strength of low Si alloys. Increased Si content generally increases the strength and the ductility. The increase in ductility with increased Si is particularly significant when the Fe content is high. The charts are used to show that the cracking of second phase particles imposes a limit to the maximum achievable strength by limiting the ductility of strong alloys. The (Cu + Mg) content (at.%), which determines the precipitation strengthening and the volume fraction of Cu-rich and Mg-rich intermetallics, can be used to select the alloys for given strength and ductility, provided the Fe content stays below the Si-dependent critical level for the formation of pre-eutectic alpha-phase particles or beta-phase plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow stress in tension and compression has been measured as a function of plastic strain in Mg-2Zn castings with grain sizes ranging from 55 to 340 mum. Hall-Petch parameters have been calculated and are compared to those previously reported. In contrast to the behaviour of pure Mg grain refined with Zr and of hot-worked and recrystallised pure Mg and Mg-Zn alloys, the cast material shows little tension/compression asymmetry of the flow stress. The possible effects of texture and of twinning are noted. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studied the effect of the impurity iron and the alloying elements aluminium and zinc in single-phase substrate magnesium alloys on the corrosion resistance of the alloys after anodisation. It was found that increasing zinc content (0-2%) led to increased corrosion resistance of an anodised single-phase Mg-Zn alloy. The addition of Al lowered the corrosion resistance of an anodised commercial purity Mg-Al single-phase alloy, whereas the same addition was found to be beneficial to the corrosion resistance of an anodised high purity Mg-Al single-phase alloy. Heat-treatment made the substrate Mg-Al and Mg-Zn alloys more uniform and hence improved the corrosion resistance of the alloys after anodisation. The detrimental effect of iron impurity on corrosion performance of the unanodised substrate single-phase magnesium alloys was inherited by the anodised alloys. The corrosion resistance of the anodised Mg alloys was found to be closely correlated with the corrosion performance of the unanodised as-cast Mg alloys. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxidation behaviour of porous, sintered iron was studied by thermo-gravimetric analysis (TGA), at temperatures between 300oC and 700oC, in a flowing atmosphere of 20% O2/80% N2. Samples for TGA tests were compacted from pure iron powder, at 150MPa to 550MPa, and vacuum sintered at 1120oC. The mass gain of samples during oxidation was recorded continuously for a period of 24 hours. It was found that the oxidation mass gain of PM samples depended on the permeability of the pore structure and the temperature. At low temperatures, the oxidising gas was able to permeate through the pore structure, causing the oxidation of a large active surface area. At high temperatures the active surface area was smaller, because oxygen diffusing into the pore structure, from the external atmosphere, was adsorbed by pore surfaces close to the external surface of the compact. Although the weight of the external oxide scale on compacts increased with increasing oxidation temperature, the absence of oxide in the core porosity in compacts oxidised at higher temperatures resulted in smaller mass gains than were observed for compacts oxidised at lower temperatures. The heat generated by the oxidation of the large active surface areas of porous samples was studied by thermo-calorimetric analysis (TCA). It was determined that this phenomenon could raise the core temperature of samples significantly above the ambient furnace temperature, and affecting the morphology of the oxide scale formed. The effects (on oxidation behaviour at 500oC) of small, elemental alloy additions of Al, Cu, P and Si to pure iron powder were studied. It was found that elements that promote pore rounding during sintering caused a significant reduction in the mass gain rate of the PM alloys, compared to the PM pure iron. The oxidation resistance due to these elements prevented pore closure by oxide growth, so that the active surface area of these PM alloys remained high. The PM alloys were also studied by thermo-mechanical analysis (TMA, dilatometry), to determine their dimensional stability during sintering and subsequent elevated temperature service. The oxidation experiment was augmented with optical and electron microscopy, and X-ray analysis of alloy and scale compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bettini et al (2006 Nat. Nanotechnol. 1 182-5) reported the first experimental realization of linear atomic chains (LACs) composed of different atoms (Au and Ag). The different contents of Au and Ag were observed in the chains from what was found in the bulk alloys, which raises the question of what the wire composition is, if it is in equilibrium with a bulk alloy. In this work we address the thermodynamic driving force for species fractionation in LACs under tension, and we present the density-functional theory results for Ag-Au chain alloys. A pronounced stabilization of the wires with an alternating Ag-Au sequence is observed, which could be behind the experimentally observed Au enrichment in LACs from alloys with high Ag content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters under three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, and inflammatory activity, and the results of a hemoglobinopathy investigation as: iron deficiency anemia (n=42), anemia of chronic disease (n=28), anemia of chronic disease associated with iron deficiency anemia (n=22), and heterozygous β thalassemia (n=25). The percentage of microcytic red cells, hypochromic red cells, and levels of hemoglobin content in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating between the different types of anemia. There was no significant difference between the iron deficient group and anemia of chronic disease associated with absolute iron deficiency in respect to any parameter. The percentage of hypochromic red cells was the best parameter to discriminate anemia of chronic disease with and without absolute iron deficiency (area under curve=0.785; 95% confidence interval: 0.661-0.909, with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic red cells minus hypochromic red cells was very accurate in differentiating iron deficiency anemia and heterozygous β thalassemia (area under curve=0.977; 95% confidence interval: 0.950-1.005; with sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). The indices related to red cells and reticulocytes have a moderate performance in identifying absolute iron deficiency in patients with anemia of chronic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.