479 resultados para interespecific bud


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[cropped from 1940 team photo]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potted lychee trees (cv. Tai so) with mature vegetative flushes were grown under three day/night temperature regimes known to induce floral (18/13degreesC), intermediate (23/18degreesC) and vegetative (28/23degreesC) shoot structures. Heating roots respective to shoots accelerated bud-break and shoot emergence, but reduced the level of floral initiation in emergent shoots. At 18/13degreesC, root temperatures of 20 and 25degreesC decreased the period of shoot dormancy from 9 weeks to 5 and 3 weeks, respectively. A root temperature of 20degreesC also increased the proportion of both leafy and stunted panicles to normal leafless panicles, and reduced the number of axillary panicles accompanying each terminal particle. A root temperature of 25degreesC produced only vegetative shoots. At 23/18degreesC, heating roots increased the proportion of vegetative shoots and partially emerged buds to leafy and stunted particles as well as accelerating bud-break. Cooling of roots in relation to the shoot resulted in non-emergence of buds at both 28/23 and 23/18degreesC. Bud-break did not occur until root cooling was terminated and root temperature returned to that of the shoot. At 23/18degreesC, subsequent emergent shoots had a greater proportion of leafy panicles relative to control trees. At 28/23degreesC, all emergent shoots remained vegetative. Lychee floral initiation is influenced by both root and shoot temperature. Root temperature has a direct effect on the length of the shoot dormancy period, with high temperatures reducing this period and the subsequent level of floral initiation. However, an extended period of dormancy in itself is not sufficient for floral initiation, with low shoot temperatures also a necessary prerequisite. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutants that branch profusely in the presence of a growing shoot tip have highlighted the role of graft-transmissible signals that are produced in roots and stem. Orthologous genes in Arabidopsis, pea and petunia are involved in the transmission of a novel long-distance message. These genes show varying degrees of regulation by auxin and an auxin-independent feedback system, and encode enzymes that might act on carotenoid-like substrates. Axillary bud outgrowth is under homeostatic control, involving developmental stages or checkpoints. Perturbation of the long-range messaging and auxin depletion does not guarantee that bud outgrowth will ensue at a particular node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, grapevine (Vitis vinifera L.) leaf characterisation has been a driving force in the identification of cultivars. In this study, ampelometric (foliometric) analysis was done on leaf samples collected from hand-pruned, mechanically pruned and minimally pruned ‘Sauvignon blanc’ and ‘Syrah’ vines to estimate the impact of within-vineyard variability and a change in bud load on the stability of leaf properties. The results showed that within-vineyard variability of ampelometric characteristics was high within a cultivar, irrespective of bud load. In terms of the O.I.V. coding system, zero to four class differences were observed between minimum and maximum values of each characteristic. The value of variability of each characteristic was different between the three levels of bud load and the two cultivars. With respect to bud load, the number of shoots per vine had a significant effect on the characteristics of the leaf laminae. Single leaf area and lengths of veins changed significantly for both cultivars, irrespective of treatment, while angle between veins proved to be a stable characteristic. A large number of biometric data can be recorded on a single leaf; the data measured on several leaves, however, are not necessarily unique for a specific cultivar. The leaf characteristics analysed in this study can be divided into two groups according to the response to a change in bud load, i.e. stable (angles between the veins, depths of sinuses) and variable (length of the veins, length of the petiole, single leaf area). The variable characteristics are not recommended to be used in cultivar identification, unless the pruning method/bud load is known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bud formation by Saccharomyces cerevisiae is a fundamental process for yeast proliferation. Bud emergence is initiated by the polarization of the cytoskeleton, leading to local secretory vesicle delivery and gulcan synthase activity. The master regulator of polarity establishment is a small Rho-family GTPase – Cdc42. Cdc42 forms a clustered patch at the incipient budding site in late G1 and mediates downstream events which lead to bud emergence. Cdc42 promotes morphogenesis via its various effectors. PAKs (p21-activated kinases) are important Cdc42 effectors which mediate actin cytoskeleton polarization and septin filament assembly. The PAKs Cla4 and Ste20 share common binding domains for GTP-Cdc42 and they are partially redundant in function. However, we found that Cla4 and Ste20 behaved differently during the polarization and this depended on their different membrane interaction domains. Also, Cla4 and Ste20 compete for a limited number of binding sites at the polarity patch during bud emergence. These results suggest that PAKs may be differentially regulated during polarity establishment.

Morphogenesis of yeast must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site prior to bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor”. Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed, and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Calluna vulgaris is one of the most important landscaping plants produced in Germany. Its enormous economic success is due to the prolonged flower attractiveness of mutants in flower morphology, the so-called bud-bloomers. In this study, we present the first genetic linkage map of C. vulgaris in which we mapped a locus of the economically highly desired trait " flower type" .Results: The map was constructed in JoinMap 4.1. using 535 AFLP markers from a single mapping population. A large fraction (40%) of markers showed distorted segregation. To test the effect of segregation distortion on linkage estimation, these markers were sorted regarding their segregation ratio and added in groups to the data set. The plausibility of group formation was evaluated by comparison of the " two-way pseudo-testcross" and the " integrated" mapping approach. Furthermore, regression mapping was compared to the multipoint-likelihood algorithm. The majority of maps constructed by different combinations of these methods consisted of eight linkage groups corresponding to the chromosome number of C. vulgaris.Conclusions: All maps confirmed the independent inheritance of the most important horticultural traits " flower type" , " flower colour" , and " leaf colour". An AFLP marker for the most important breeding target " flower type" was identified. The presented genetic map of C. vulgaris can now serve as a basis for further molecular marker selection and map-based cloning of the candidate gene encoding the unique flower architecture of C. vulgaris bud-bloomers. © 2013 Behrend et al.; licensee BioMed Central Ltd.