974 resultados para inner shelf of the East China Sea
Resumo:
The response of the South China Sea (SCS) to Typhoon Imbudo was examined using POM model. The results indicated that SST decreased by 2-6 degrees C with a rightward-biased response as Typhoon Imbudo passed across the SCS. Due to a strong mixing process, the mixed layer (ML) depth deepened as much as 10-60 m and ML heat budget lost 824.78 W/m(2), which was OF dominated by the vertical mixing. By the response of upper ML heat transport, the temperature below the ML increased and oscillated near the inertial period. Furthermore, strong inertial currents were generated by the storm with the max currents up to 1.4 m/s in the upper ML.
Resumo:
An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.
Resumo:
In the present paper, correlation between the South China Sea summer monsoon (SCSSM) onset and heat content in the upper layer of the warm pool in the western Pacific Ocean is examined using the Scripps Institution of Oceanography dataset for the period of 1955-1998 and an approach to prediction the SCSSM onset is proposed. Correlation showes that there exists interdecadal variability of the SCSSM onset demarcated by 1970 with the largest correlation coefficient in the area west of the center of the warm pool rather than near its centers, implying certain effect from other factors involved besides ENSO. As the correlation is poor for the period before 1970, the heat content anomaly of the warm pool after 1970 is used to indicate early or late onset of the SCSSM beforehand. An ideal representative area (1A degrees x1A degrees) for the warm pool heat content was determined with its center at 3A degrees N/138A degrees E. The nearest TAO (TAO-Tropical Atmosphere Ocean-array) mooring to the center is at 2A degrees N/137A degrees E, and chosen to calculate the heat content for prediction. It is suggested that the TAO mooring at 2A degrees N/137A degrees E could be used to predict the SCSSM onset with the heat content in the upper layer, if the correlation between the SCSSM onset and the heat content of the warm pool runs like that of after 1970. On the other hand, if the situation does like the one before 1970, the representative station is determined at 13A degrees S/74A degrees E with relatively poor correlation, meaning that the warm pool in the western Pacific Ocean plays more important role in the SCSSM onset than the Indian Ocean.
Resumo:
We describe a new species of gerreid fish, Gerres septemfasciatus, based on four specimens collected from the northern South China Sea. G septemfasciatus most closely resembles G limbatus in general appearance. However, G. septemfasciatus is distinguished from the latter and other congeners by having 3 to 3.5 scales between the base of. the fifth dorsal spine and lateral line. This species has a distinctive color pattern, including 7-8 regular, vertical, blue-grayish bands on its side. The distribution of this species is currently known to include the Chinese coastal waters of the South China Sea, but may be also include the coastal waters of southeastern Asia.
Resumo:
Macrobenthos biomass and bottom biocoenoses were studied in the sublittoral zone of the southern East Siberian Sea. The macrobenthos is characterized by relatively high abundance (from 30 to 2680 #/m**2), biomass (from 0.25 to 578.8 g/m**2), and diversity (83 species in total). Lateral distribution of macrobenthos biomass correlates with a substrate type and salinity and is substantially higher in areas washed by the Arctic water mass than in estuaries with mixed fresh and Arctic waters and shows a tendency to decreasing in the convergence zone of different water masses. The highest macrobenthos biomass is observed in cores of water masses in the Long Strait area and in the eastern part of the sea.
Resumo:
The Aral Sea is located in an arid region with much sand and salt deposits in the surrounding barren open land. Hence, significant displacements of sediments into the lakebed by the action of wind, water, gravity, or snow are likely. The bathymetry of the lake was last observed in the 1960s, and within the last half century, the structure of the lakebed has changed. Based on satellite observations of the temporal changes of shoreline (Landsat optical remote sensing) and water level (multi-mission satellite altimetry) over more than one decade an updated bathymetric chart for the East Basin of the Aral Sea has been generated. During this time, the geometry of the shallow East Basin experienced strong fluctuations due to the occurrence of periods of drying and strong inflow. By the year 2014 the East Basin fell dry. The dynamic behavior of the basin allowed for estimating the lake's bathymetry from a series of satellite-based information. The river mouth made its impression in the present East Aral Sea, because its shrinking led to the inflow of much sediment into the lake's interior. In addition, salt deposits along the shorelines increased the corresponding elevation, a phenomenon that is more pronounced in the reduced lakebed because of increased salinity. It must be noted that height estimates from satellite altimetry were only possible down to a minimum elevation of 27 m above sea level due to a lack of reliable altimetry data over the largely reduced water surface. In order to construct a complete bathymetric chart of the lakebed of the East Aral Sea heights below 27 m were obtained solely from Landsat optical images following the SRB (Selected Region Boundary) approach as described by Singh et al. (2015).