953 resultados para initiation factor 5A
Resumo:
Protozoan parasites are one of the major causes of diseases worldwide. The vector transmitted parasites exhibit complex life cycles involving interactions between humans, protozoa, and arthropods. In order to adapt themselves to the changing microenvironments, they have to undergo complex morphological and metabolic changes. These changes can be brought about by expressing a new pool of proteins in the cell or by modifying the existing repertoire of proteins via posttranslational modifications (PTMs). PTMs involve covalent modification and processing of proteins thereby modulating their functions. Some of these changes may involve PTMs of parasite proteins to help the parasite survive within the host and the vector. Out of many PTMs known, three are unique since they occur only on single proteins: ethanolamine phosphoglycerol (EPG) glutamate, hypusine and diphthamide. These modifications occur on eukaryotic elongation factor 1A (eEF1A), eukaryotic initiation factor 5A (eIF5A) and eukaryotic elongation factor 2 (eEF2), respectively. Interestingly, the proteins carrying these unique modifications are all involved in the elongation steps of translation. Here we review these unique PTMs, which are well conserved in protozoan parasites, and discuss their roles in viability and pathogenesis of parasites. Characterization of these modifications and studying their roles in physiology as well as pathogenesis will provide new insights in parasite biology, which may also help in developing new therapeutic interventions.
Resumo:
Two high copy suppressors of temperature-sensitive TATA-binding protein (TBP) mutants were isolated. One suppressor was TIF51A, which encodes eukaryotic translation initiation factor 5A. The other high copy suppressor, YGL241W, also known as KAP114, is one of 14 importin/karyopherin proteins in yeast. These proteins mediate the transport of specific macromolecules into and out of the nucleus. Cells lacking Kap114 partially mislocalize TBP to the cytoplasm. Kap114 binds TBP in vitro, and binding is disrupted in the presence of GTPγS. Therefore, Kap114 is an importer of TBP into the nucleus, but alternative import pathways must also exist.
Resumo:
Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids.
Resumo:
Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.
Resumo:
In a first step toward understanding the molecular basis of pineapple fruit development, a sequencing project was initiated to survey a range of expressed sequences from green unripe and yellow ripe fruit tissue. A highly abundant metallothionein transcript was identified during library construction, and was estimated to account for up to 50% of all EST library clones. Library clones with metallothionein subtracted were sequenced, and 408 unripe green and 1140 ripe yellow edited EST clone sequences were retrieved. Clone redundancy was high, with the combined 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of the EST clone sequences clustered within 13.5% and 9.3% of contigs from green unripe and yellow ripe libraries, respectively, indicating that a small subset of genes dominate the majority of the transcriptome. Furthermore, sequence cluster analysis, northern analysis, and functional classification revealed major differences between genes expressed in the unripe green and ripe yellow fruit tissues. Abundant genes identified from the green fruit include a fruit bromelain and a bromelain inhibitor. Abundant genes identified in the yellow fruit library include a MADS box gene, and several genes normally associated with protein synthesis, including homologues of ribosomal L10 and the translation factors SUI1 and eIF5A. Both the green unripe and yellow ripe libraries contained high proportions of clones associated with oxidative stress responses and the detoxification of free radicals.
Resumo:
Le virus de l’immunodéficience humaine de type 1 (VIH-1) est responsable du syndrome de l’immunodéficience acquise (SIDA). Il faut identifier de nouvelles cibles pour le développement d’agents anti-VIH-1, car ce virus développe une résistance aux agents présentement utilisés. Notre but est d’approfondir la caractérisation de l’étape du changement de cadre de lecture ribosomique en -1 (déphasage -1) nécessaire à la production du précurseur des enzymes du VIH-1. Ce déphasage est programmé et effectué par une minorité de ribosomes lorsqu’ils traduisent la séquence dite glissante à un endroit spécifique de l’ARN messager (ARNm) pleine-longueur du VIH-1. L’efficacité de déphasage est contrôlée par le signal stimulateur de déphasage (SSF), une tige-boucle irrégulière située en aval de la séquence glissante. La structure du SSF est déroulée lors du passage d’un ribosome, mais elle peut se reformer ensuite. Nous avons montré que des variations de l’initiation de la traduction affectent l’efficacité de déphasage. Nous avons utilisé, dans des cellules Jurkat-T et HEK 293T, un rapporteur bicistronique où les gènes codant pour les luciférases de la Renilla (Rluc) et de la luciole (Fluc) sont séparés par la région de déphasage du VIH-1. La Rluc est produite par tous les ribosomes traduisant l’ARNm rapporteur alors que la Fluc est produite uniquement par les ribosomes effectuant un déphasage. L’initiation de ce rapporteur est coiffe-dépendante, comme pour la majorité des ARNm cellulaires. Nous avons examiné l’effet de trois inhibiteurs de l’initiation et montré que leur présence augmente l’efficacité de déphasage. Nous avons ensuite étudié l’effet de la tige-boucle TAR, qui est présente à l’extrémité 5’ de tous les ARNm du VIH-1. TAR empêche la liaison de la petite sous-unité du ribosome (40S) à l’ARNm et module aussi l’activité de la protéine kinase dépendante de l’ARN double-brin (PKR). L’activation de PKR inhibe l’initiation en phosphorylant le facteur d’initiation eucaryote 2 (eIF2) alors que l’inhibition de PKR a l’effet inverse. Nous avons étudié l’effet de TAR sur la traduction et le déphasage via son effet sur PKR en utilisant TAR en trans ou en cis, mais à une certaine distance de l’extrémité 5’ afin d’éviter l’interférence avec la liaison de la 40S. Nous avons observé qu’une faible concentration de TAR, qui active PKR, augmente l’efficacité de déphasage alors qu’une concentration élevée de TAR, qui inhibe PKR, diminue cette efficacité. Nous avons proposé un modèle où des variations de l’initiation affectent l’efficacité de déphasage en modifiant la distance entre les ribosomes parcourant l’ARNm et, donc, la probabilité qu’ils rencontrent un SSF structuré. Par la suite, nous avons déterminé l’effet de la région 5’ non traduite (UTR) de l’ARNm pleine-longueur du VIH-1 sur l’efficacité de déphasage. Cette 5’UTR contient plusieurs régions structurées, dont TAR à l’extrémité 5’, qui peut interférer avec l’initiation. Cet ARNm a une coiffe permettant une initiation coiffe-dépendante ainsi qu’un site d’entrée interne des ribosomes (IRES), permettant une initiation IRES-dépendante. Nous avons introduit cette 5’UTR, complète ou en partie, comme 5’UTR de notre ARNm rapporteur bicistronique. Nos résultats démontrent que cette 5’UTR complète inhibe l’initiation coiffe dépendante et augmente l’efficacité de déphasage et que ces effets sont dus à la présence de TAR suivie de la tige-boucle Poly(A). Nous avons aussi construit un rapporteur tricistronique où les ribosomes exprimant les luciférases utilisent obligatoirement l’IRES. Nous avons observé que cette initiation par l’IRES est faible et que l’efficacité de déphasage correspondante est également faible. Nous avons formulé une hypothèse pour expliquer cette situation. Nous avons également observé que lorsque les deux modes d’initiation sont disponibles, l’initiation coiffe dépendante est prédominante. Finalement, nous avons étudié l’effet de la protéine virale Tat sur l’initiation de la traduction et sur l’efficacité de déphasage. Nous avons montré qu’elle augmente l’initiation de la traduction et que son effet est plus prononcé lorsque TAR est située à l’extrémité 5’ des ARNm. Nous proposons un modèle expliquant les effets de Tat sur l’initiation de la traduction par l’inhibition de PKR ainsi que par des changements de l’expression de protéines cellulaires déroulant TAR. Ces résultats permettent de mieux comprendre les mécanismes régissant le déphasage du VIH-1, ce qui est essentiel pour le développement d’agents anti-déphasage.
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. This review focuses on the functional characterization of eIF5A. Although this protein was originally identified as a translation initiation factor, subsequent studies did not support a role for eIF5A in general translation initiation. eIF5A has also been implicated in nuclear export of HIV-1 Rev and mRNA decay, but these findings are controversial in the literature and may reflect secondary effects of eIF-5A function. Next, the involvement of eIF5A and hypusination in the control of the cell cycle and proliferation in various organisms is reviewed. Finally, recent evidence in favor of reconsidering the role of eIF5A as a translation factor is discussed. Future studies may reveal the specific mechanism by which eIF5A affects protein synthesis.
Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant
Resumo:
eIF5A is a highly conserved putative eukaryotic translation initiation factor that has been implicated in translation initiation, nucleocytoplasmic transport, mRNA decay, and cell proliferation, but with no precise function assigned so far. We have previously shown that high-copy PKCI suppresses the phenotype of tif51A-1, a temperature-sensitive mutant of eIF5A in S. cerevisiae. Here, in an attempt to further understand how Pkc1 functionally interacts with eIF-5A, it was determined that PKCI suppression of tif51A-1 is independent of the cell integrity MAP kinase cascade. Furthermore, two new suppressor genes, ZDS1 and GIC1, were identified. We demonstrated that ZDS1 and ZDS2 are necessary for PKC1, but not for GIC1 suppression. Moreover, high-copy GIC1 also suppresses the growth defect of a PKCI mutant (stt1), suggesting the existence of a Pkc1-Zds1-Gic1 pathway. Consistent with the function of Gic1 in actin organization, the tif51A-1 strain shows an actin polarity defect that is partially recovered by overexpression of Pkc1 and Zds1 as well as Gic1. Additionally, PCL1 and BNI1, important regulators of yeast cell polarity, also suppress tif51A-1 temperature sensitiviiy Taken together, these data strongly Support the correlated involvement of Pkc1 and eIF5A in establishing actin polarity, which is essential for bud formation and G1/S transition in S. cerevisiae.
Resumo:
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation. (c) 2006 Elsevier B.V. All rights reserved.
Mapping eIF5A binding sites for Dys1 and Lia1: In vivo evidence for regulation of eIF5A hypusination
Resumo:
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Background: Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Methods: Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C - pregnant control, W - tumour-bearing, and P - pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L - pregnant leucine, WL - tumour-bearing, and PL - pair-fed, which received the same amount of food as ingested by the WL group. Results: The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ∼35% for eIF2α and eIF5, ∼17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. Conclusion: The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway. © 2007 Ventrucci et al; licensee BioMed Central Ltd.
Resumo:
O fator de início de tradução 5A (eukaryotic translation iniciation factor 5A, eIF5A) é altamente conservado entre arqueas a eucariotos, sendo que as proteínas eIF5A de Saccharomyces cerevisiae e de mamíferos são 63% idênticas. eIF5A sofre uma modificação pós-traducional única na célula, a hipusinação de um resíduo de lisina. Essa proteína já foi relacionada ao início da tradução, transporte nucleocitoplasmático, decaimento de mRNA e proliferação celular, mas a função crítica de eIF5A ainda não foi esclarecida. A depleção deste fator em S. cerevisiae leva a uma diminuição (30%) da taxa de síntese protéica, sugerindo que eIF5A seja um fator envolvido na tradução de um grupo específico de mensageiros. Dados do laboratório demonstram interação física entre eIF5A e proteínas ribossomais bem como com o fator de elongação 2 da tradução (eEF2). A interação com eEF2, sugere que eIF5A atua na etapa de elongação da tradução, ao invés do início da tradução, como proposto inicialmente. Com o objetivo de avaliar a relação de eIF5A com a etapa de elongação, foram realizadas análises de interações genéticas entre o gene codificador de eIF5A (TIF51A) e diversos genes codificadores de proteínas envolvidas na tradução. Através de análises de interações genéticas, foi observado que o mutante estável de eIF5A, tif51AK56A, apresenta um defeito de crescimento quando o mutante de eEF2, eft2H699K, está expresso em alto número de cópias, enquanto que o mutante tif51AQ22H/L93F não apresenta defeitos nesta condição. Foi observado também que o mutante tif51AQ22H/L93F apresenta um defeito de crescimento mais severo quando ocorre superexpressão de EFT2, gene codificador de eEF2. Foi observado ainda que não há complementação alélica entre os mutantes estáveis de eIF5A e que a reversibilidade do fenótipo de sensibilidade a temperatura... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
Maintenance of lasting synaptic efficacy changes requires protein synthesis. We report here a mechanism that might influence translation control at the level of the single synapse. Stimulation of metabotropic glutamate receptors in hippocampal slices induces a rapid protein kinase C-dependent translocation of multifunction kinase p90rsk to polyribosomes; concomitantly, there is enhanced phosphorylation of at least six polyribosome binding proteins. Among the polyribosome bound proteins are the p90rsk-activating kinase ERK-2 and a known p90rsk substrate, glycogen synthase kinase 3β, which regulates translation efficiency via eukaryotic initiation factor 2B. Thus metabotropic glutamate receptor stimulation could induce synaptic activity-dependent translation via translocation of p90rsk to ribosomes.
Resumo:
Transcription of ribosomal RNA genes by RNA polymerase (pol) I oscillates during the cell cycle, being maximal in S and G2 phase, repressed during mitosis, and gradually recovering during G1 progression. We have shown that transcription initiation factor (TIF)-IB/SL1 is inactivated during mitosis by cdc2/cyclin B-directed phosphorylation of TAFI110. In this study, we have monitored reactivation of transcription after exit from mitosis. We demonstrate that the pol I factor UBF is also inactivated by phosphorylation but recovers with different kinetics than TIF-IB/SL1. Whereas TIF-IB/SL1 activity is rapidly regained on entry into G1, UBF is reactivated later in G1, concomitant with the onset of pol I transcription. Repression of pol I transcription in mitosis and early G1 can be reproduced with either extracts from cells synchronized in M or G1 phase or with purified TIF-IB/SL1 and UBF isolated in the presence of phosphatase inhibitors. The results suggest that two basal transcription factors, e.g., TIF-IB/SL1 and UBF, are inactivated at mitosis and reactivated by dephosphorylation at the exit from mitosis and during G1 progression, respectively.