948 resultados para information sciences


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method of specifying the syntax of programming languages, known as hierarchical language specifications (HLS), is proposed. Efficient parallel algorithms for parsing languages generated by HLS are presented. These algorithms run on an exclusive-read exclusive-write parallel random-access machine. They require O(n) processors and O(log2n) time, where n is the length of the string to be parsed. The most important feature of these algorithms is that they do not use a stack.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Learning automata arranged in a two-level hierarchy are considered. The automata operate in a stationary random environment and update their action probabilities according to the linear-reward- -penalty algorithm at each level. Unlike some hierarchical systems previously proposed, no information transfer exists from one level to another, and yet the hierarchy possesses good convergence properties. Using weak-convergence concepts it is shown that for large time and small values of parameters in the algorithm, the evolution of the optimal path probability can be represented by a diffusion whose parameters can be computed explicitly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Systems of learning automata have been studied by various researchers to evolve useful strategies for decision making under uncertainity. Considered in this paper are a class of hierarchical systems of learning automata where the system gets responses from its environment at each level of the hierarchy. A classification of such sequential learning tasks based on the complexity of the learning problem is presented. It is shown that none of the existing algorithms can perform in the most general type of hierarchical problem. An algorithm for learning the globally optimal path in this general setting is presented, and its convergence is established. This algorithm needs information transfer from the lower levels to the higher levels. Using the methodology of estimator algorithms, this model can be generalized to accommodate other kinds of hierarchical learning tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Onboard spacecraft computing system is a case of a functionally distributed system that requires continuous interaction among the nodes to control the operations at different nodes. A simple and reliable protocol is desired for such an application. This paper discusses a formal approach to specify the computing system with respect to some important issues encountered in the design and development of a protocol for the onboard distributed system. The issues considered in this paper are concurrency, exclusiveness and sequencing relationships among the various processes at different nodes. A 6-tuple model is developed for the precise specification of the system. The model also enables us to check the consistency of specification and deadlock caused due to improper specification. An example is given to illustrate the use of the proposed methodology for a typical spacecraft configuration. Although the theory is motivated by a specific application the same may be applied to other distributed computing system such as those encountered in process control industries, power plant control and other similar environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the conclusions drawn in the bijective transformation between possibility and probability, a method is proposed to estimate the fuzzy membership function for pattern recognition purposes. A rational function approximation to the probability density function is obtained from the histogram of a finite (and sometimes very small) number of samples. This function is normalized such that the highest ordinate is one. The parameters representing the rational function are used for classifying the pattern samples based on a max-min decision rule. The method is illustrated with examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

K-means algorithm is a well known nonhierarchical method for clustering data. The most important limitations of this algorithm are that: (1) it gives final clusters on the basis of the cluster centroids or the seed points chosen initially, and (2) it is appropriate for data sets having fairly isotropic clusters. But this algorithm has the advantage of low computation and storage requirements. On the other hand, hierarchical agglomerative clustering algorithm, which can cluster nonisotropic (chain-like and concentric) clusters, requires high storage and computation requirements. This paper suggests a new method for selecting the initial seed points, so that theK-means algorithm gives the same results for any input data order. This paper also describes a hybrid clustering algorithm, based on the concepts of multilevel theory, which is nonhierarchical at the first level and hierarchical from second level onwards, to cluster data sets having (i) chain-like clusters and (ii) concentric clusters. It is observed that this hybrid clustering algorithm gives the same results as the hierarchical clustering algorithm, with less computation and storage requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiaction learning automata which update their action probabilities on the basis of the responses they get from an environment are considered in this paper. The automata update the probabilities according to whether the environment responds with a reward or a penalty. Learning automata are said to possess ergodicity of the mean if the mean action probability is the state probability (or unconditional probability) of an ergodic Markov chain. In an earlier paper [11] we considered the problem of a two-action learning automaton being ergodic in the mean (EM). The family of such automata was characterized completely by proving the necessary and sufficient conditions for automata to be EM. In this paper, we generalize the results of [11] and obtain necessary and sufficient conditions for the multiaction learning automaton to be EM. These conditions involve two families of probability updating functions. It is shown that for the automaton to be EM the two families must be linearly dependent. The vector defining the linear dependence is the only vector parameter which controls the rate of convergence of the automaton. Further, the technique for reducing the variance of the limiting distribution is discussed. Just as in the two-action case, it is shown that the set of absolutely expedient schemes and the set of schemes which possess ergodicity of the mean are mutually disjoint.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The partnership form of privatisation is increasingly being used, in particular to carry out complex and evolving bundles of services. These have not previously been privatised because of incomplete contracts and contract management difficulties. Improved performance of the government entity as contract administrator and member of the partnership is crucial to modern service delivery expectations yet the privatisation literature has focused on other aspects of partnerships leaving the understanding of factors impacting the effectiveness of the government entity underdeveloped. This paper proposes the development of knowledge as to the range of factors which impact the effectiveness of the government entity. There is limited data available as to the operation of trust in the partnership relationship, and as to the capability of a range of privatisation forms to achieve stewardship of infrastructure. This research will utilise the findings from that research to build a tentative framework which will be utilised in staged research interrogating first the privatization literature and then the literature of other disciplines and sectors. The combined data will be analysed to provide government and practitioners such as government entity CEO’s with a complete listing of the operation of the factors which impact the effectiveness of the government entity in contributing to improved service delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new automata model Mr,k, with a conceptually significant innovation in the form of multi-state alternatives at each instance, is proposed in this study. Computer simulations of the Mr,k, model in the context of feature selection in an unsupervised environment has demonstrated the superiority of the model over similar models without this multi-state-choice innovation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conceptualization in theory development has received limited consideration despite its frequently stressed importance in Information Systems research. This paper focuses on the role of construct clarity in conceptualization, arguing that construct clarity should be considered an essential criterion for evaluating conceptualization and that a focus on construct clarity can advance conceptualization methodology. Drawing from Facet Theory literature, we formulate a set of principles for assessing construct clarity, particularly regarding a construct’s relationships to its extant related constructs. Conscious and targeted attention to this criterion can promote a research ecosystem more supportive of knowledge accumulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When augmented with the longest common prefix (LCP) array and some other structures, the suffix array can solve many string processing problems in optimal time and space. A compressed representation of the LCP array is also one of the main building blocks in many compressed suffix tree proposals. In this paper, we describe a new compressed LCP representation: the sampled LCP array. We show that when used with a compressed suffix array (CSA), the sampled LCP array often offers better time/space trade-offs than the existing alternatives. We also show how to construct the compressed representations of the LCP array directly from a CSA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large fraction of an XML document typically consists of text data. The XPath query language allows text search via the equal, contains, and starts-with predicates. Such predicates can be efficiently implemented using a compressed self-index of the document's text nodes. Most queries, however, contain some parts querying the text of the document, plus some parts querying the tree structure. It is therefore a challenge to choose an appropriate evaluation order for a given query, which optimally leverages the execution speeds of the text and tree indexes. Here the SXSI system is introduced. It stores the tree structure of an XML document using a bit array of opening and closing brackets plus a sequence of labels, and stores the text nodes of the document using a global compressed self-index. On top of these indexes sits an XPath query engine that is based on tree automata. The engine uses fast counting queries of the text index in order to dynamically determine whether to evaluate top-down or bottom-up with respect to the tree structure. The resulting system has several advantages over existing systems: (1) on pure tree queries (without text search) such as the XPathMark queries, the SXSI system performs on par or better than the fastest known systems MonetDB and Qizx, (2) on queries that use text search, SXSI outperforms the existing systems by 1-3 orders of magnitude (depending on the size of the result set), and (3) with respect to memory consumption, SXSI outperforms all other systems for counting-only queries.