986 resultados para inference algorithms
Resumo:
Background The problem of silent multiple comparisons is one of the most difficult statistical problems faced by scientists. It is a particular problem for investigating a one-off cancer cluster reported to a health department because any one of hundreds, or possibly thousands, of neighbourhoods, schools, or workplaces could have reported a cluster, which could have been for any one of several types of cancer or any one of several time periods. Methods This paper contrasts the frequentist approach with a Bayesian approach for dealing with silent multiple comparisons in the context of a one-off cluster reported to a health department. Two published cluster investigations were re-analysed using the Dunn-Sidak method to adjust frequentist p-values and confidence intervals for silent multiple comparisons. Bayesian methods were based on the Gamma distribution. Results Bayesian analysis with non-informative priors produced results similar to the frequentist analysis, and suggested that both clusters represented a statistical excess. In the frequentist framework, the statistical significance of both clusters was extremely sensitive to the number of silent multiple comparisons, which can only ever be a subjective "guesstimate". The Bayesian approach is also subjective: whether there is an apparent statistical excess depends on the specified prior. Conclusion In cluster investigations, the frequentist approach is just as subjective as the Bayesian approach, but the Bayesian approach is less ambitious in that it treats the analysis as a synthesis of data and personal judgements (possibly poor ones), rather than objective reality. Bayesian analysis is (arguably) a useful tool to support complicated decision-making, because it makes the uncertainty associated with silent multiple comparisons explicit.
Resumo:
Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.
Resumo:
- This paper presents a validation proposal for development of diagnostic and prognostic algorithms for SF6 puffer circuit-breakers reproduced from actual site waveforms. The re-ignition/restriking rates are duplicated in given circuits and the cumulative energy dissipated in interrupters by the restriking currents. The targeted objective is to provide a simulated database for diagnosis of re-ignition/restrikes relating to the phase to earth voltage and the number of re-ignition/restrikes as well as estimating the remaining life of SF6 circuit-breakers. The model-based diagnosis of a tool will be useful in monitoring re-ignition/restrikes as well as predicting a nozzle’s lifetime. This will help ATP users with practical study cases and component data compilation for shunt reactor switching and capacitor switching. This method can be easily applied with different data for the different dielectric curves of circuit breakers and networks. This paper presents modelling details and some of the available cases, required project support, the validation proposal, the specific plan for implementation and the propsed main contributions.
Resumo:
Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.