983 resultados para inertial sensor orientation calibration


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we propose and analyze a novel racetrack resonator based vibration sensor for inertial grade application. The resonator is formed with an Anti Resonance Reflecting Optical Waveguide (ARROW) structure which offers the advantage of low loss and single mode propagation. The waveguide is designed to operate at 1310nm and TM mode of propagation since the Photo-elastic co-efficient is larger than TE mode in a SiO2/ Si3N4/ SiO2. The longer side of the resonator is placed over a cantilever beam with a proof mass. A single bus waveguide is coupled to the resonator structure. When the beam vibrates the resonator arm at the foot of the cantilever experiences maximum stress. Due to opto-mechanical coupling the effective refractive index of the resonator changes hence the resonance wavelength shifts. The non uniform cantilever beam has a dimension of 1.75mm X 0.45mm X 0.020mm and the proof mass has a dimension of 3mm X 3mm X 0.380mm. The proof mass lowers the natural frequency of vibration to 410Hz, hence designed for inertial navigation application. The operating band of frequency is from DC to 100Hz and acceleration of less than 1g. The resonator has a Free Spectral Range (FSR) of 893pm and produces a phase change of 22.4mrad/g.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Etched Fiber Bragg Grating (EFBG) sensors are attractive from the point of the inherently high multiplexing ability of fiber based sensors. However, the strong dependence of the sensitivity of EFBG sensors on the fiber diameter requires robust methods for calibration when used for distributed sensing in a large array format. Using experimental data and numerical modelling, we show that knowledge of the wavelength shift during the etch process is necessary for high-fidelity calibration of EFBG arrays. However as this approach requires the monitoring of every element of the sensor array during etching, we also proposed and demonstrated a calibration scheme using data from bulk refractometry measurements conducted post-fabrication without needing any information about the etching process. Although this approach is not as precise as the first one, it may be more practical as there is no requirement to monitor each element of the sensor array. We were able to calibrate the response of the sensors to within 3% with the approach using information acquired during etching and to within 5% using the post-fabrication bulk refractometry approach in spite of the sensitivities of the array element differing by more than a factor of 4. These two approaches present a tradeoff between accuracy and practicality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The band-by-band vicarious calibration of on-orbit satellite ocean color instruments, such as SeaWiFS and MODIS, using ground-based measurements has significant residual uncertainties. This paper applies spectral shape and population statistics to tune the calibration of the blue bands against each other to allow examination of the interband calibration and potentially provide an analysis of calibration trends. This adjustment does not require simultaneous matches of ground and satellite observations. The method demonstrates the spectral stability of the SeaWiFS calibration and identifies a drift in the MODIS instrument onboard Aqua that falls within its current calibration uncertainties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 3 T superconducting magnet with a 70 mm diameter warm bore and energy storage of 47 kJ has been successfully fabricated and tested, which can be used to calibrate Hall sensors in high magnetic field as well as conduct superconducting experiments. The magnet consists of three solenoid coils and an iron yoke. The homogeneity of the magnetic field in the region of interest (ROI) is +/- 6.0 x 10(-5). The coils of the magnet were fabricated with NbTi-Cu superconducting wire and the stray magnetic field is shielded by an iron yoke. The coils and yoke are fully immersed in a helium vessel. The optimized structural design, stress and quench simulation, fabrication and test results are presented in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Semiconductor manufactures are increasing reliant on optical emission spectroscopy (OES) to source information on plasma characteristics and process change. However, nonlinearities in the response of OES sensors and errors in their calibration lead to discrepancies in observed wavelength detector response. This paper presents a technique for the retrospective spectral calibration of multiple OES sensors. Underlying methodology is given, and alignment performance is evaluated using OES recordings from a semiconductor plasma process. The paper concludes with a discussion of results and suggests avenues for future work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production